MW 22x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010047
GTIN/EAN: 5906301810469
Średnica Ø
22 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
17.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.33 kg / 91.51 N
Indukcja magnetyczna
296.78 mT / 2968 Gs
Powłoka
[NiCuNi] nikiel
6.11 ZŁ z VAT / szt. + cena za transport
4.97 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub skontaktuj się przez
formularz
na stronie kontakt.
Moc i wygląd elementów magnetycznych zweryfikujesz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 22x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010047 |
| GTIN/EAN | 5906301810469 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 17.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.33 kg / 91.51 N |
| Indukcja magnetyczna ~ ? | 296.78 mT / 2968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe wartości stanowią rezultat analizy matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 22x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2967 Gs
296.7 mT
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
mocny |
| 1 mm |
2767 Gs
276.7 mT
|
8.12 kg / 17.89 lbs
8116.0 g / 79.6 N
|
mocny |
| 2 mm |
2538 Gs
253.8 mT
|
6.82 kg / 15.05 lbs
6824.4 g / 66.9 N
|
mocny |
| 3 mm |
2295 Gs
229.5 mT
|
5.58 kg / 12.30 lbs
5580.8 g / 54.7 N
|
mocny |
| 5 mm |
1818 Gs
181.8 mT
|
3.50 kg / 7.73 lbs
3504.7 g / 34.4 N
|
mocny |
| 10 mm |
938 Gs
93.8 mT
|
0.93 kg / 2.06 lbs
933.4 g / 9.2 N
|
niskie ryzyko |
| 15 mm |
492 Gs
49.2 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
niskie ryzyko |
| 20 mm |
277 Gs
27.7 mT
|
0.08 kg / 0.18 lbs
81.6 g / 0.8 N
|
niskie ryzyko |
| 30 mm |
108 Gs
10.8 mT
|
0.01 kg / 0.03 lbs
12.4 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 22x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.36 kg / 3.01 lbs
1364.0 g / 13.4 N
|
| 3 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1116.0 g / 10.9 N
|
| 5 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
186.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 22x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.80 kg / 6.17 lbs
2799.0 g / 27.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 22x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| 1 mm |
|
2.33 kg / 5.14 lbs
2332.5 g / 22.9 N
|
| 2 mm |
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
| 3 mm |
|
7.00 kg / 15.43 lbs
6997.5 g / 68.6 N
|
| 5 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 10 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 11 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 12 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 22x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
OK |
| 40 °C | -2.2% |
9.12 kg / 20.12 lbs
9124.7 g / 89.5 N
|
OK |
| 60 °C | -4.4% |
8.92 kg / 19.66 lbs
8919.5 g / 87.5 N
|
|
| 80 °C | -6.6% |
8.71 kg / 19.21 lbs
8714.2 g / 85.5 N
|
|
| 100 °C | -28.8% |
6.64 kg / 14.65 lbs
6643.0 g / 65.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 22x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.63 kg / 45.48 lbs
4 566 Gs
|
3.09 kg / 6.82 lbs
3095 g / 30.4 N
|
N/A |
| 1 mm |
19.34 kg / 42.63 lbs
5 745 Gs
|
2.90 kg / 6.40 lbs
2901 g / 28.5 N
|
17.40 kg / 38.37 lbs
~0 Gs
|
| 2 mm |
17.95 kg / 39.57 lbs
5 535 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
16.15 kg / 35.61 lbs
~0 Gs
|
| 3 mm |
16.52 kg / 36.42 lbs
5 310 Gs
|
2.48 kg / 5.46 lbs
2478 g / 24.3 N
|
14.87 kg / 32.78 lbs
~0 Gs
|
| 5 mm |
13.69 kg / 30.18 lbs
4 834 Gs
|
2.05 kg / 4.53 lbs
2053 g / 20.1 N
|
12.32 kg / 27.16 lbs
~0 Gs
|
| 10 mm |
7.75 kg / 17.09 lbs
3 637 Gs
|
1.16 kg / 2.56 lbs
1162 g / 11.4 N
|
6.97 kg / 15.38 lbs
~0 Gs
|
| 20 mm |
2.06 kg / 4.55 lbs
1 877 Gs
|
0.31 kg / 0.68 lbs
310 g / 3.0 N
|
1.86 kg / 4.10 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
336 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
147 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
57 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 22x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 22x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.98 km/h
(6.94 m/s)
|
0.41 J | |
| 30 mm |
40.82 km/h
(11.34 m/s)
|
1.10 J | |
| 50 mm |
52.66 km/h
(14.63 m/s)
|
1.83 J | |
| 100 mm |
74.47 km/h
(20.69 m/s)
|
3.66 J |
Tabela 9: Odporność na korozję
MW 22x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 22x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 337 Mx | 123.4 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 22x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.33 kg | Standard |
| Woda (dno rzeki) |
10.68 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy marnuje się na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Wrażliwość na ciepło
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
To nie jest zabawka
Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Siła zgniatająca
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Ochrona urządzeń
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
