MW 12x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010020
GTIN/EAN: 5906301810193
Średnica Ø
12 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.62 kg / 25.73 N
Indukcja magnetyczna
614.94 mT / 6149 Gs
Powłoka
[NiCuNi] nikiel
28.29 ZŁ z VAT / szt. + cena za transport
23.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub napisz przez
formularz
na stronie kontakt.
Moc a także budowę magnesów neodymowych sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MW 12x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010020 |
| GTIN/EAN | 5906301810193 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.62 kg / 25.73 N |
| Indukcja magnetyczna ~ ? | 614.94 mT / 6149 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane są rezultat symulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 12x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6146 Gs
614.6 mT
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
średnie ryzyko |
| 1 mm |
5138 Gs
513.8 mT
|
1.83 kg / 4.04 lbs
1831.5 g / 18.0 N
|
słaby uchwyt |
| 2 mm |
4199 Gs
419.9 mT
|
1.22 kg / 2.70 lbs
1222.9 g / 12.0 N
|
słaby uchwyt |
| 3 mm |
3388 Gs
338.8 mT
|
0.80 kg / 1.76 lbs
796.3 g / 7.8 N
|
słaby uchwyt |
| 5 mm |
2194 Gs
219.4 mT
|
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
słaby uchwyt |
| 10 mm |
853 Gs
85.3 mT
|
0.05 kg / 0.11 lbs
50.4 g / 0.5 N
|
słaby uchwyt |
| 15 mm |
417 Gs
41.7 mT
|
0.01 kg / 0.03 lbs
12.1 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
239 Gs
23.9 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 12x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.54 lbs
244.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 12x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 12x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 1 mm |
|
0.66 kg / 1.44 lbs
655.0 g / 6.4 N
|
| 2 mm |
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 3 mm |
|
1.97 kg / 4.33 lbs
1965.0 g / 19.3 N
|
| 5 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 10 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 11 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 12 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 12x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
OK |
| 40 °C | -2.2% |
2.56 kg / 5.65 lbs
2562.4 g / 25.1 N
|
OK |
| 60 °C | -4.4% |
2.50 kg / 5.52 lbs
2504.7 g / 24.6 N
|
OK |
| 80 °C | -6.6% |
2.45 kg / 5.39 lbs
2447.1 g / 24.0 N
|
|
| 100 °C | -28.8% |
1.87 kg / 4.11 lbs
1865.4 g / 18.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 12x50 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.33 kg / 58.05 lbs
6 179 Gs
|
3.95 kg / 8.71 lbs
3950 g / 38.7 N
|
N/A |
| 1 mm |
22.19 kg / 48.93 lbs
11 284 Gs
|
3.33 kg / 7.34 lbs
3329 g / 32.7 N
|
19.97 kg / 44.04 lbs
~0 Gs
|
| 2 mm |
18.41 kg / 40.58 lbs
10 277 Gs
|
2.76 kg / 6.09 lbs
2761 g / 27.1 N
|
16.57 kg / 36.53 lbs
~0 Gs
|
| 3 mm |
15.11 kg / 33.30 lbs
9 309 Gs
|
2.27 kg / 5.00 lbs
2266 g / 22.2 N
|
13.60 kg / 29.97 lbs
~0 Gs
|
| 5 mm |
9.94 kg / 21.91 lbs
7 551 Gs
|
1.49 kg / 3.29 lbs
1491 g / 14.6 N
|
8.94 kg / 19.72 lbs
~0 Gs
|
| 10 mm |
3.36 kg / 7.40 lbs
4 389 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.66 lbs
~0 Gs
|
| 20 mm |
0.51 kg / 1.12 lbs
1 706 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
303 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
206 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
148 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 12x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 12x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
8.02 km/h
(2.23 m/s)
|
0.11 J | |
| 30 mm |
13.73 km/h
(3.81 m/s)
|
0.31 J | |
| 50 mm |
17.73 km/h
(4.92 m/s)
|
0.51 J | |
| 100 mm |
25.07 km/h
(6.96 m/s)
|
1.03 J |
Tabela 9: Parametry powłoki (trwałość)
MW 12x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 12x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 230 Mx | 82.3 µWb |
| Współczynnik Pc | 1.49 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 12x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.62 kg | Standard |
| Woda (dno rzeki) |
3.00 kg
(+0.38 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki powłoce (nikiel, Au, srebro) zyskują nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (metal do metalu)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Świadome użytkowanie
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Chronić przed dziećmi
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
