MW 12x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010020
GTIN/EAN: 5906301810193
Średnica Ø
12 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.62 kg / 25.73 N
Indukcja magnetyczna
614.94 mT / 6149 Gs
Powłoka
[NiCuNi] nikiel
28.29 ZŁ z VAT / szt. + cena za transport
23.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie napisz poprzez
formularz zapytania
w sekcji kontakt.
Moc a także kształt magnesów przetestujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 12x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010020 |
| GTIN/EAN | 5906301810193 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.62 kg / 25.73 N |
| Indukcja magnetyczna ~ ? | 614.94 mT / 6149 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Niniejsze wartości stanowią wynik symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 12x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6146 Gs
614.6 mT
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
uwaga |
| 1 mm |
5138 Gs
513.8 mT
|
1.83 kg / 4.04 lbs
1831.5 g / 18.0 N
|
niskie ryzyko |
| 2 mm |
4199 Gs
419.9 mT
|
1.22 kg / 2.70 lbs
1222.9 g / 12.0 N
|
niskie ryzyko |
| 3 mm |
3388 Gs
338.8 mT
|
0.80 kg / 1.76 lbs
796.3 g / 7.8 N
|
niskie ryzyko |
| 5 mm |
2194 Gs
219.4 mT
|
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
niskie ryzyko |
| 10 mm |
853 Gs
85.3 mT
|
0.05 kg / 0.11 lbs
50.4 g / 0.5 N
|
niskie ryzyko |
| 15 mm |
417 Gs
41.7 mT
|
0.01 kg / 0.03 lbs
12.1 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
239 Gs
23.9 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 12x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.54 lbs
244.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 12x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 12x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 1 mm |
|
0.66 kg / 1.44 lbs
655.0 g / 6.4 N
|
| 2 mm |
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 3 mm |
|
1.97 kg / 4.33 lbs
1965.0 g / 19.3 N
|
| 5 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 10 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 11 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 12 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 12x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
OK |
| 40 °C | -2.2% |
2.56 kg / 5.65 lbs
2562.4 g / 25.1 N
|
OK |
| 60 °C | -4.4% |
2.50 kg / 5.52 lbs
2504.7 g / 24.6 N
|
OK |
| 80 °C | -6.6% |
2.45 kg / 5.39 lbs
2447.1 g / 24.0 N
|
|
| 100 °C | -28.8% |
1.87 kg / 4.11 lbs
1865.4 g / 18.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 12x50 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.33 kg / 58.05 lbs
6 179 Gs
|
3.95 kg / 8.71 lbs
3950 g / 38.7 N
|
N/A |
| 1 mm |
22.19 kg / 48.93 lbs
11 284 Gs
|
3.33 kg / 7.34 lbs
3329 g / 32.7 N
|
19.97 kg / 44.04 lbs
~0 Gs
|
| 2 mm |
18.41 kg / 40.58 lbs
10 277 Gs
|
2.76 kg / 6.09 lbs
2761 g / 27.1 N
|
16.57 kg / 36.53 lbs
~0 Gs
|
| 3 mm |
15.11 kg / 33.30 lbs
9 309 Gs
|
2.27 kg / 5.00 lbs
2266 g / 22.2 N
|
13.60 kg / 29.97 lbs
~0 Gs
|
| 5 mm |
9.94 kg / 21.91 lbs
7 551 Gs
|
1.49 kg / 3.29 lbs
1491 g / 14.6 N
|
8.94 kg / 19.72 lbs
~0 Gs
|
| 10 mm |
3.36 kg / 7.40 lbs
4 389 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.66 lbs
~0 Gs
|
| 20 mm |
0.51 kg / 1.12 lbs
1 706 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
303 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
206 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
148 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 12x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
8.02 km/h
(2.23 m/s)
|
0.11 J | |
| 30 mm |
13.73 km/h
(3.81 m/s)
|
0.31 J | |
| 50 mm |
17.73 km/h
(4.92 m/s)
|
0.51 J | |
| 100 mm |
25.07 km/h
(6.96 m/s)
|
1.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 12x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 230 Mx | 82.3 µWb |
| Współczynnik Pc | 1.49 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.62 kg | Standard |
| Woda (dno rzeki) |
3.00 kg
(+0.38 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- z zastosowaniem płyty ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, szczelina) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Produkt nie dla dzieci
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Nadwrażliwość na metale
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ochrona urządzeń
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Zagrożenie życia
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zakłócić pracę urządzenia ratującego życie.
