MW 12x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010019
GTIN: 5906301810186
Średnica Ø
12 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.45 kg / 33.81 N
Indukcja magnetyczna
343.64 mT / 3436 Gs
Powłoka
[NiCuNi] nikiel
1.353 ZŁ z VAT / szt. + cena za transport
1.100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub napisz korzystając z
formularz zgłoszeniowy
na naszej stronie.
Parametry oraz wygląd magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 12x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010019 |
| GTIN | 5906301810186 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.45 kg / 33.81 N |
| Indukcja magnetyczna ~ ? | 343.64 mT / 3436 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - raport
Przedstawione dane stanowią wynik symulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 12x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3435 Gs
343.5 mT
|
3.45 kg / 3450.0 g
33.8 N
|
mocny |
| 1 mm |
2950 Gs
295.0 mT
|
2.54 kg / 2544.7 g
25.0 N
|
mocny |
| 2 mm |
2423 Gs
242.3 mT
|
1.72 kg / 1717.5 g
16.8 N
|
słaby uchwyt |
| 3 mm |
1935 Gs
193.5 mT
|
1.09 kg / 1094.6 g
10.7 N
|
słaby uchwyt |
| 5 mm |
1190 Gs
119.0 mT
|
0.41 kg / 413.8 g
4.1 N
|
słaby uchwyt |
| 10 mm |
382 Gs
38.2 mT
|
0.04 kg / 42.7 g
0.4 N
|
słaby uchwyt |
| 15 mm |
156 Gs
15.6 mT
|
0.01 kg / 7.1 g
0.1 N
|
słaby uchwyt |
| 20 mm |
76 Gs
7.6 mT
|
0.00 kg / 1.7 g
0.0 N
|
słaby uchwyt |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 12x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 690.0 g
6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 508.0 g
5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 344.0 g
3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 218.0 g
2.1 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 12x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 1035.0 g
10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 690.0 g
6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 345.0 g
3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 1725.0 g
16.9 N
|
MW 12x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 345.0 g
3.4 N
|
| 1 mm |
|
0.86 kg / 862.5 g
8.5 N
|
| 2 mm |
|
1.73 kg / 1725.0 g
16.9 N
|
| 5 mm |
|
3.45 kg / 3450.0 g
33.8 N
|
| 10 mm |
|
3.45 kg / 3450.0 g
33.8 N
|
MW 12x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 3450.0 g
33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 3374.1 g
33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 3298.2 g
32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 3222.3 g
31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 2456.4 g
24.1 N
|
MW 12x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
8.23 kg / 8226 g
80.7 N
4 952 Gs
|
N/A |
| 1 mm |
7.16 kg / 7163 g
70.3 N
6 410 Gs
|
6.45 kg / 6446 g
63.2 N
~0 Gs
|
| 2 mm |
6.07 kg / 6067 g
59.5 N
5 900 Gs
|
5.46 kg / 5461 g
53.6 N
~0 Gs
|
| 3 mm |
5.03 kg / 5030 g
49.3 N
5 372 Gs
|
4.53 kg / 4527 g
44.4 N
~0 Gs
|
| 5 mm |
3.29 kg / 3287 g
32.2 N
4 342 Gs
|
2.96 kg / 2958 g
29.0 N
~0 Gs
|
| 10 mm |
0.99 kg / 987 g
9.7 N
2 379 Gs
|
0.89 kg / 888 g
8.7 N
~0 Gs
|
| 20 mm |
0.10 kg / 102 g
1.0 N
764 Gs
|
0.09 kg / 92 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
85 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 12x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 12x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.42 km/h
(9.01 m/s)
|
0.14 J | |
| 30 mm |
55.73 km/h
(15.48 m/s)
|
0.41 J | |
| 50 mm |
71.94 km/h
(19.98 m/s)
|
0.68 J | |
| 100 mm |
101.74 km/h
(28.26 m/s)
|
1.35 J |
MW 12x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 114 Mx | 41.1 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
MW 12x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.45 kg | Standard |
| Woda (dno rzeki) |
3.95 kg
(+0.50 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi tylko ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z wykorzystaniem blachy ze miękkiej stali, która służy jako idealny przewodnik strumienia
- której grubość to min. 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak farby)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Wpływ na smartfony
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Nie lekceważ mocy
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Nie dawać dzieciom
Neodymowe magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Nadwrażliwość na metale
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Ochrona urządzeń
Potężne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
