MW 55x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010081
GTIN/EAN: 5906301810803
Średnica Ø
55 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
445.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
92.25 kg / 904.94 N
Indukcja magnetyczna
416.97 mT / 4170 Gs
Powłoka
[NiCuNi] nikiel
154.21 ZŁ z VAT / szt. + cena za transport
125.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie pisz przez
formularz zapytania
na stronie kontaktowej.
Właściwości i kształt magnesów neodymowych zobaczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 55x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 55x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010081 |
| GTIN/EAN | 5906301810803 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 55 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 445.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 92.25 kg / 904.94 N |
| Indukcja magnetyczna ~ ? | 416.97 mT / 4170 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Niniejsze wartości stanowią wynik kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 55x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4169 Gs
416.9 mT
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
krytyczny poziom |
| 1 mm |
4034 Gs
403.4 mT
|
86.37 kg / 190.41 lbs
86369.8 g / 847.3 N
|
krytyczny poziom |
| 2 mm |
3894 Gs
389.4 mT
|
80.47 kg / 177.41 lbs
80469.7 g / 789.4 N
|
krytyczny poziom |
| 3 mm |
3751 Gs
375.1 mT
|
74.67 kg / 164.62 lbs
74670.6 g / 732.5 N
|
krytyczny poziom |
| 5 mm |
3461 Gs
346.1 mT
|
63.58 kg / 140.17 lbs
63580.6 g / 623.7 N
|
krytyczny poziom |
| 10 mm |
2756 Gs
275.6 mT
|
40.32 kg / 88.89 lbs
40320.8 g / 395.5 N
|
krytyczny poziom |
| 15 mm |
2140 Gs
214.0 mT
|
24.31 kg / 53.59 lbs
24308.3 g / 238.5 N
|
krytyczny poziom |
| 20 mm |
1644 Gs
164.4 mT
|
14.34 kg / 31.61 lbs
14338.1 g / 140.7 N
|
krytyczny poziom |
| 30 mm |
975 Gs
97.5 mT
|
5.05 kg / 11.12 lbs
5046.0 g / 49.5 N
|
mocny |
| 50 mm |
388 Gs
38.8 mT
|
0.80 kg / 1.77 lbs
801.0 g / 7.9 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 55x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| 1 mm | Stal (~0.2) |
17.27 kg / 38.08 lbs
17274.0 g / 169.5 N
|
| 2 mm | Stal (~0.2) |
16.09 kg / 35.48 lbs
16094.0 g / 157.9 N
|
| 3 mm | Stal (~0.2) |
14.93 kg / 32.92 lbs
14934.0 g / 146.5 N
|
| 5 mm | Stal (~0.2) |
12.72 kg / 28.03 lbs
12716.0 g / 124.7 N
|
| 10 mm | Stal (~0.2) |
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| 15 mm | Stal (~0.2) |
4.86 kg / 10.72 lbs
4862.0 g / 47.7 N
|
| 20 mm | Stal (~0.2) |
2.87 kg / 6.32 lbs
2868.0 g / 28.1 N
|
| 30 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 50 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 55x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.68 kg / 61.01 lbs
27675.0 g / 271.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.23 kg / 20.34 lbs
9225.0 g / 90.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
46.13 kg / 101.69 lbs
46125.0 g / 452.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 55x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 1 mm |
|
7.69 kg / 16.95 lbs
7687.5 g / 75.4 N
|
| 2 mm |
|
15.37 kg / 33.90 lbs
15375.0 g / 150.8 N
|
| 3 mm |
|
23.06 kg / 50.84 lbs
23062.5 g / 226.2 N
|
| 5 mm |
|
38.44 kg / 84.74 lbs
38437.5 g / 377.1 N
|
| 10 mm |
|
76.88 kg / 169.48 lbs
76875.0 g / 754.1 N
|
| 11 mm |
|
84.56 kg / 186.43 lbs
84562.5 g / 829.6 N
|
| 12 mm |
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 55x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
OK |
| 40 °C | -2.2% |
90.22 kg / 198.90 lbs
90220.5 g / 885.1 N
|
OK |
| 60 °C | -4.4% |
88.19 kg / 194.43 lbs
88191.0 g / 865.2 N
|
|
| 80 °C | -6.6% |
86.16 kg / 189.95 lbs
86161.5 g / 845.2 N
|
|
| 100 °C | -28.8% |
65.68 kg / 144.80 lbs
65682.0 g / 644.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 55x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
254.60 kg / 561.30 lbs
5 431 Gs
|
38.19 kg / 84.20 lbs
38190 g / 374.6 N
|
N/A |
| 1 mm |
246.57 kg / 543.59 lbs
8 206 Gs
|
36.99 kg / 81.54 lbs
36985 g / 362.8 N
|
221.91 kg / 489.23 lbs
~0 Gs
|
| 2 mm |
238.37 kg / 525.52 lbs
8 068 Gs
|
35.76 kg / 78.83 lbs
35756 g / 350.8 N
|
214.54 kg / 472.97 lbs
~0 Gs
|
| 3 mm |
230.21 kg / 507.52 lbs
7 929 Gs
|
34.53 kg / 76.13 lbs
34531 g / 338.7 N
|
207.19 kg / 456.77 lbs
~0 Gs
|
| 5 mm |
214.04 kg / 471.88 lbs
7 645 Gs
|
32.11 kg / 70.78 lbs
32106 g / 315.0 N
|
192.64 kg / 424.69 lbs
~0 Gs
|
| 10 mm |
175.48 kg / 386.86 lbs
6 923 Gs
|
26.32 kg / 58.03 lbs
26322 g / 258.2 N
|
157.93 kg / 348.17 lbs
~0 Gs
|
| 20 mm |
111.28 kg / 245.33 lbs
5 513 Gs
|
16.69 kg / 36.80 lbs
16692 g / 163.8 N
|
100.15 kg / 220.80 lbs
~0 Gs
|
| 50 mm |
23.33 kg / 51.43 lbs
2 524 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
20.99 kg / 46.28 lbs
~0 Gs
|
| 60 mm |
13.93 kg / 30.70 lbs
1 950 Gs
|
2.09 kg / 4.61 lbs
2089 g / 20.5 N
|
12.53 kg / 27.63 lbs
~0 Gs
|
| 70 mm |
8.48 kg / 18.70 lbs
1 522 Gs
|
1.27 kg / 2.81 lbs
1272 g / 12.5 N
|
7.63 kg / 16.83 lbs
~0 Gs
|
| 80 mm |
5.29 kg / 11.66 lbs
1 202 Gs
|
0.79 kg / 1.75 lbs
793 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 90 mm |
3.38 kg / 7.45 lbs
961 Gs
|
0.51 kg / 1.12 lbs
507 g / 5.0 N
|
3.04 kg / 6.70 lbs
~0 Gs
|
| 100 mm |
2.21 kg / 4.87 lbs
777 Gs
|
0.33 kg / 0.73 lbs
332 g / 3.3 N
|
1.99 kg / 4.39 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 55x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 27.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 21.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 13.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 12.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 55x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.05 km/h
(5.01 m/s)
|
5.60 J | |
| 30 mm |
25.98 km/h
(7.22 m/s)
|
11.60 J | |
| 50 mm |
32.63 km/h
(9.06 m/s)
|
18.30 J | |
| 100 mm |
45.90 km/h
(12.75 m/s)
|
36.21 J |
Tabela 9: Odporność na korozję
MW 55x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 55x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 101 075 Mx | 1010.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 55x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 92.25 kg | Standard |
| Woda (dno rzeki) |
105.63 kg
(+13.38 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z zastosowaniem blachy ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans (między magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Uczulenie na powłokę
Pewna grupa użytkowników wykazuje uczulenie na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może wywołać wysypkę. Sugerujemy noszenie rękawiczek ochronnych.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Kompas i GPS
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Ogromna siła
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Ryzyko zmiażdżenia
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Produkt nie dla dzieci
Neodymowe magnesy nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
