MPL 20x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020132
GTIN/EAN: 5906301811381
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
3.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.42 kg / 43.32 N
Indukcja magnetyczna
456.78 mT / 4568 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość za pomocą
nasz formularz online
w sekcji kontakt.
Siłę i kształt magnesów przetestujesz u nas w
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MPL 20x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020132 |
| GTIN/EAN | 5906301811381 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 3.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.42 kg / 43.32 N |
| Indukcja magnetyczna ~ ? | 456.78 mT / 4568 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze wartości są bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4563 Gs
456.3 mT
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
mocny |
| 1 mm |
3323 Gs
332.3 mT
|
2.34 kg / 5.17 lbs
2344.7 g / 23.0 N
|
mocny |
| 2 mm |
2341 Gs
234.1 mT
|
1.16 kg / 2.56 lbs
1163.0 g / 11.4 N
|
słaby uchwyt |
| 3 mm |
1678 Gs
167.8 mT
|
0.60 kg / 1.32 lbs
597.4 g / 5.9 N
|
słaby uchwyt |
| 5 mm |
944 Gs
94.4 mT
|
0.19 kg / 0.42 lbs
189.2 g / 1.9 N
|
słaby uchwyt |
| 10 mm |
320 Gs
32.0 mT
|
0.02 kg / 0.05 lbs
21.7 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
141 Gs
14.1 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.88 kg / 1.95 lbs
884.0 g / 8.7 N
|
| 1 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 2.92 lbs
1326.0 g / 13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.88 kg / 1.95 lbs
884.0 g / 8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| 1 mm |
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
| 2 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 3 mm |
|
3.32 kg / 7.31 lbs
3315.0 g / 32.5 N
|
| 5 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 10 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 11 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 12 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
OK |
| 40 °C | -2.2% |
4.32 kg / 9.53 lbs
4322.8 g / 42.4 N
|
OK |
| 60 °C | -4.4% |
4.23 kg / 9.32 lbs
4225.5 g / 41.5 N
|
|
| 80 °C | -6.6% |
4.13 kg / 9.10 lbs
4128.3 g / 40.5 N
|
|
| 100 °C | -28.8% |
3.15 kg / 6.94 lbs
3147.0 g / 30.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.84 kg / 28.30 lbs
5 504 Gs
|
1.93 kg / 4.24 lbs
1925 g / 18.9 N
|
N/A |
| 1 mm |
9.53 kg / 21.01 lbs
7 864 Gs
|
1.43 kg / 3.15 lbs
1430 g / 14.0 N
|
8.58 kg / 18.91 lbs
~0 Gs
|
| 2 mm |
6.81 kg / 15.01 lbs
6 647 Gs
|
1.02 kg / 2.25 lbs
1021 g / 10.0 N
|
6.13 kg / 13.51 lbs
~0 Gs
|
| 3 mm |
4.79 kg / 10.57 lbs
5 577 Gs
|
0.72 kg / 1.59 lbs
719 g / 7.1 N
|
4.31 kg / 9.51 lbs
~0 Gs
|
| 5 mm |
2.40 kg / 5.30 lbs
3 949 Gs
|
0.36 kg / 0.79 lbs
360 g / 3.5 N
|
2.16 kg / 4.77 lbs
~0 Gs
|
| 10 mm |
0.55 kg / 1.21 lbs
1 888 Gs
|
0.08 kg / 0.18 lbs
82 g / 0.8 N
|
0.49 kg / 1.09 lbs
~0 Gs
|
| 20 mm |
0.06 kg / 0.14 lbs
640 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.73 km/h
(9.65 m/s)
|
0.17 J | |
| 30 mm |
59.97 km/h
(16.66 m/s)
|
0.52 J | |
| 50 mm |
77.42 km/h
(21.51 m/s)
|
0.87 J | |
| 100 mm |
109.49 km/h
(30.41 m/s)
|
1.73 J |
Tabela 9: Odporność na korozję
MPL 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 204 Mx | 42.0 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.42 kg | Standard |
| Woda (dno rzeki) |
5.06 kg
(+0.64 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny to min. 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (bez zanieczyszczeń)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Bezpieczny dystans
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Bezpieczna praca
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Siła zgniatająca
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Nie wierć w magnesach
Pył powstający podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
