MW 12x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010442
GTIN: 5906301811114
Średnica Ø
12 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
1.27 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.87 kg / 8.51 N
Indukcja magnetyczna
0.15 mT / 2 Gs
Powłoka
[NiCuNi] nikiel
0.431 ZŁ z VAT / szt. + cena za transport
0.350 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Dzwoń do nas
+48 22 499 98 98
lub pisz przez
formularz
na stronie kontakt.
Udźwig i wygląd elementów magnetycznych przetestujesz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 12x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010442 |
| GTIN | 5906301811114 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 1.27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.87 kg / 8.51 N |
| Indukcja magnetyczna ~ ? | 0.15 mT / 2 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska produktu - dane
Poniższe informacje są bezpośredni efekt analizy fizycznej. Wartości oparte są na algorytmach dla klasy NdFeB. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MW 12x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
0.87 kg / 870.0 g
8.5 N
|
słaby uchwyt |
| 1 mm |
1365 Gs
136.5 mT
|
0.72 kg / 718.1 g
7.0 N
|
słaby uchwyt |
| 2 mm |
1163 Gs
116.3 mT
|
0.52 kg / 521.4 g
5.1 N
|
słaby uchwyt |
| 5 mm |
587 Gs
58.7 mT
|
0.13 kg / 132.6 g
1.3 N
|
słaby uchwyt |
| 10 mm |
180 Gs
18.0 mT
|
0.01 kg / 12.5 g
0.1 N
|
słaby uchwyt |
| 15 mm |
70 Gs
7.0 mT
|
0.00 kg / 1.9 g
0.0 N
|
słaby uchwyt |
| 20 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
słaby uchwyt |
| 30 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 12x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 261.0 g
2.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 174.0 g
1.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 87.0 g
0.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.44 kg / 435.0 g
4.3 N
|
MW 12x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 87.0 g
0.9 N
|
| 1 mm |
|
0.22 kg / 217.5 g
2.1 N
|
| 2 mm |
|
0.44 kg / 435.0 g
4.3 N
|
| 5 mm |
|
0.87 kg / 870.0 g
8.5 N
|
| 10 mm |
|
0.87 kg / 870.0 g
8.5 N
|
MW 12x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.87 kg / 870.0 g
8.5 N
|
OK |
| 40 °C | -2.2% |
0.85 kg / 850.9 g
8.3 N
|
OK |
| 60 °C | -4.4% |
0.83 kg / 831.7 g
8.2 N
|
OK |
| 80 °C | -6.6% |
0.81 kg / 812.6 g
8.0 N
|
|
| 100 °C | -28.8% |
0.62 kg / 619.4 g
6.1 N
|
MW 12x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.31 kg / 1305.0 g
12.8 N
|
N/A |
| 2 mm |
0.78 kg / 780.0 g
7.7 N
|
0.73 kg / 728.0 g
7.1 N
|
| 5 mm |
0.20 kg / 195.0 g
1.9 N
|
0.18 kg / 182.0 g
1.8 N
|
| 10 mm |
0.02 kg / 15.0 g
0.1 N
|
0.01 kg / 14.0 g
0.1 N
|
| 20 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MW 12x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 12x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.63 km/h
(7.40 m/s)
|
0.03 J | |
| 30 mm |
45.72 km/h
(12.70 m/s)
|
0.10 J | |
| 50 mm |
59.02 km/h
(16.40 m/s)
|
0.17 J | |
| 100 mm |
83.47 km/h
(23.19 m/s)
|
0.34 J |
MW 12x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.87 kg | Standard |
| Woda (dno rzeki) |
1.00 kg
(+0.13 kg Zysk z wyporności)
|
+14.5% |
Zobacz też inne propozycje
Zalety oraz wady magnesów neodymowych NdFeB.
Należy pamiętać, iż obok wysokiej mocy, magnesy te wyróżniają się następującymi zaletami:
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
Należy pamiętać, że siła w aplikacji będzie inne w zależności od poniższych elementów, zaczynając od najistotniejszych:
- Dystans – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
* Udźwig wyznaczano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Moc przyciągania
Stosuj magnesy z rozwagą. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Ryzyko połknięcia
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Dla uczulonych
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Zagrożenie fizyczne
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ważne!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
