MW 18x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010401
GTIN/EAN: 5906301811107
Średnica Ø
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
19.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.76 kg / 105.51 N
Indukcja magnetyczna
460.54 mT / 4605 Gs
Powłoka
[NiCuNi] nikiel
7.82 ZŁ z VAT / szt. + cena za transport
6.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie napisz korzystając z
formularz kontaktowy
na naszej stronie.
Moc oraz kształt elementów magnetycznych wyliczysz u nas w
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 18x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010401 |
| GTIN/EAN | 5906301811107 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 19.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.76 kg / 105.51 N |
| Indukcja magnetyczna ~ ? | 460.54 mT / 4605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione dane są rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4604 Gs
460.4 mT
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
miażdżący |
| 1 mm |
4114 Gs
411.4 mT
|
8.59 kg / 18.94 lbs
8592.4 g / 84.3 N
|
mocny |
| 2 mm |
3615 Gs
361.5 mT
|
6.64 kg / 14.63 lbs
6635.0 g / 65.1 N
|
mocny |
| 3 mm |
3137 Gs
313.7 mT
|
5.00 kg / 11.01 lbs
4996.2 g / 49.0 N
|
mocny |
| 5 mm |
2305 Gs
230.5 mT
|
2.70 kg / 5.95 lbs
2698.6 g / 26.5 N
|
mocny |
| 10 mm |
1045 Gs
104.5 mT
|
0.55 kg / 1.22 lbs
555.0 g / 5.4 N
|
niskie ryzyko |
| 15 mm |
517 Gs
51.7 mT
|
0.14 kg / 0.30 lbs
135.7 g / 1.3 N
|
niskie ryzyko |
| 20 mm |
285 Gs
28.5 mT
|
0.04 kg / 0.09 lbs
41.1 g / 0.4 N
|
niskie ryzyko |
| 30 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| 1 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 2 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1328.0 g / 13.0 N
|
| 3 mm | Stal (~0.2) |
1.00 kg / 2.20 lbs
1000.0 g / 9.8 N
|
| 5 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.38 kg / 11.86 lbs
5380.0 g / 52.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
538.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1345.0 g / 13.2 N
|
| 2 mm |
|
2.69 kg / 5.93 lbs
2690.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.90 lbs
4035.0 g / 39.6 N
|
| 5 mm |
|
6.73 kg / 14.83 lbs
6725.0 g / 66.0 N
|
| 10 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 11 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 12 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
OK |
| 40 °C | -2.2% |
10.52 kg / 23.20 lbs
10523.3 g / 103.2 N
|
OK |
| 60 °C | -4.4% |
10.29 kg / 22.68 lbs
10286.6 g / 100.9 N
|
OK |
| 80 °C | -6.6% |
10.05 kg / 22.16 lbs
10049.8 g / 98.6 N
|
|
| 100 °C | -28.8% |
7.66 kg / 16.89 lbs
7661.1 g / 75.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.25 kg / 73.30 lbs
5 648 Gs
|
4.99 kg / 10.99 lbs
4987 g / 48.9 N
|
N/A |
| 1 mm |
29.87 kg / 65.85 lbs
8 727 Gs
|
4.48 kg / 9.88 lbs
4480 g / 44.0 N
|
26.88 kg / 59.27 lbs
~0 Gs
|
| 2 mm |
26.55 kg / 58.53 lbs
8 228 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
23.90 kg / 52.68 lbs
~0 Gs
|
| 3 mm |
23.41 kg / 51.62 lbs
7 727 Gs
|
3.51 kg / 7.74 lbs
3512 g / 34.5 N
|
21.07 kg / 46.46 lbs
~0 Gs
|
| 5 mm |
17.84 kg / 39.33 lbs
6 744 Gs
|
2.68 kg / 5.90 lbs
2676 g / 26.3 N
|
16.06 kg / 35.40 lbs
~0 Gs
|
| 10 mm |
8.34 kg / 18.38 lbs
4 611 Gs
|
1.25 kg / 2.76 lbs
1251 g / 12.3 N
|
7.50 kg / 16.54 lbs
~0 Gs
|
| 20 mm |
1.71 kg / 3.78 lbs
2 091 Gs
|
0.26 kg / 0.57 lbs
257 g / 2.5 N
|
1.54 kg / 3.40 lbs
~0 Gs
|
| 50 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
221 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
106 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
78 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.70 km/h
(6.86 m/s)
|
0.45 J | |
| 30 mm |
41.49 km/h
(11.52 m/s)
|
1.27 J | |
| 50 mm |
53.54 km/h
(14.87 m/s)
|
2.11 J | |
| 100 mm |
75.72 km/h
(21.03 m/s)
|
4.22 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 828 Mx | 118.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.76 kg | Standard |
| Woda (dno rzeki) |
12.32 kg
(+1.56 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
UMP 75x25 [M10x3] GW F200 GOLD DUAL / N42 - uchwyty magnetyczne do poszukiwań
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Odstęp (pomiędzy magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
BHP przy magnesach
Pole magnetyczne a elektronika
Potężne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Świadome użytkowanie
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Zakaz zabawy
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Uczulenie na powłokę
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ryzyko pożaru
Pył generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Rozruszniki serca
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
