MW 18x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010401
GTIN/EAN: 5906301811107
Średnica Ø
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
19.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.76 kg / 105.51 N
Indukcja magnetyczna
460.54 mT / 4605 Gs
Powłoka
[NiCuNi] nikiel
7.82 ZŁ z VAT / szt. + cena za transport
6.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo napisz za pomocą
formularz kontaktowy
w sekcji kontakt.
Parametry i budowę magnesu testujesz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 18x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010401 |
| GTIN/EAN | 5906301811107 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 19.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.76 kg / 105.51 N |
| Indukcja magnetyczna ~ ? | 460.54 mT / 4605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione informacje stanowią wynik analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4604 Gs
460.4 mT
|
10.76 kg / 10760.0 g
105.6 N
|
niebezpieczny! |
| 1 mm |
4114 Gs
411.4 mT
|
8.59 kg / 8592.4 g
84.3 N
|
średnie ryzyko |
| 2 mm |
3615 Gs
361.5 mT
|
6.64 kg / 6635.0 g
65.1 N
|
średnie ryzyko |
| 3 mm |
3137 Gs
313.7 mT
|
5.00 kg / 4996.2 g
49.0 N
|
średnie ryzyko |
| 5 mm |
2305 Gs
230.5 mT
|
2.70 kg / 2698.6 g
26.5 N
|
średnie ryzyko |
| 10 mm |
1045 Gs
104.5 mT
|
0.55 kg / 555.0 g
5.4 N
|
niskie ryzyko |
| 15 mm |
517 Gs
51.7 mT
|
0.14 kg / 135.7 g
1.3 N
|
niskie ryzyko |
| 20 mm |
285 Gs
28.5 mT
|
0.04 kg / 41.1 g
0.4 N
|
niskie ryzyko |
| 30 mm |
110 Gs
11.0 mT
|
0.01 kg / 6.2 g
0.1 N
|
niskie ryzyko |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.15 kg / 2152.0 g
21.1 N
|
| 1 mm | Stal (~0.2) |
1.72 kg / 1718.0 g
16.9 N
|
| 2 mm | Stal (~0.2) |
1.33 kg / 1328.0 g
13.0 N
|
| 3 mm | Stal (~0.2) |
1.00 kg / 1000.0 g
9.8 N
|
| 5 mm | Stal (~0.2) |
0.54 kg / 540.0 g
5.3 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 110.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.23 kg / 3228.0 g
31.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.15 kg / 2152.0 g
21.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.08 kg / 1076.0 g
10.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.38 kg / 5380.0 g
52.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 538.0 g
5.3 N
|
| 1 mm |
|
1.35 kg / 1345.0 g
13.2 N
|
| 2 mm |
|
2.69 kg / 2690.0 g
26.4 N
|
| 5 mm |
|
6.73 kg / 6725.0 g
66.0 N
|
| 10 mm |
|
10.76 kg / 10760.0 g
105.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.76 kg / 10760.0 g
105.6 N
|
OK |
| 40 °C | -2.2% |
10.52 kg / 10523.3 g
103.2 N
|
OK |
| 60 °C | -4.4% |
10.29 kg / 10286.6 g
100.9 N
|
OK |
| 80 °C | -6.6% |
10.05 kg / 10049.8 g
98.6 N
|
|
| 100 °C | -28.8% |
7.66 kg / 7661.1 g
75.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 18x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
33.25 kg / 33248 g
326.2 N
5 648 Gs
|
N/A |
| 1 mm |
29.87 kg / 29870 g
293.0 N
8 727 Gs
|
26.88 kg / 26883 g
263.7 N
~0 Gs
|
| 2 mm |
26.55 kg / 26550 g
260.5 N
8 228 Gs
|
23.90 kg / 23895 g
234.4 N
~0 Gs
|
| 3 mm |
23.41 kg / 23414 g
229.7 N
7 727 Gs
|
21.07 kg / 21073 g
206.7 N
~0 Gs
|
| 5 mm |
17.84 kg / 17839 g
175.0 N
6 744 Gs
|
16.06 kg / 16055 g
157.5 N
~0 Gs
|
| 10 mm |
8.34 kg / 8339 g
81.8 N
4 611 Gs
|
7.50 kg / 7505 g
73.6 N
~0 Gs
|
| 20 mm |
1.71 kg / 1715 g
16.8 N
2 091 Gs
|
1.54 kg / 1543 g
15.1 N
~0 Gs
|
| 50 mm |
0.05 kg / 46 g
0.5 N
342 Gs
|
0.04 kg / 41 g
0.4 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.70 km/h
(6.86 m/s)
|
0.45 J | |
| 30 mm |
41.49 km/h
(11.52 m/s)
|
1.27 J | |
| 50 mm |
53.54 km/h
(14.87 m/s)
|
2.11 J | |
| 100 mm |
75.72 km/h
(21.03 m/s)
|
4.22 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 828 Mx | 118.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.76 kg | Standard |
| Woda (dno rzeki) |
12.32 kg
(+1.56 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady BHP dla użytkowników magnesów
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Samozapłon
Proszek powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Zasady obsługi
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ochrona urządzeń
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Temperatura pracy
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
