MW 10x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010005
GTIN/EAN: 5906301810049
Średnica Ø
10 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.60 kg / 25.51 N
Indukcja magnetyczna
587.44 mT / 5874 Gs
Powłoka
[NiCuNi] nikiel
6.15 ZŁ z VAT / szt. + cena za transport
5.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie napisz przez
formularz zapytania
przez naszą stronę.
Moc i formę magnesów neodymowych testujesz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 10x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010005 |
| GTIN/EAN | 5906301810049 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.60 kg / 25.51 N |
| Indukcja magnetyczna ~ ? | 587.44 mT / 5874 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione informacje są wynik symulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 10x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5870 Gs
587.0 mT
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
mocny |
| 1 mm |
4702 Gs
470.2 mT
|
1.67 kg / 3.68 lbs
1668.3 g / 16.4 N
|
słaby uchwyt |
| 2 mm |
3645 Gs
364.5 mT
|
1.00 kg / 2.21 lbs
1002.8 g / 9.8 N
|
słaby uchwyt |
| 3 mm |
2784 Gs
278.4 mT
|
0.58 kg / 1.29 lbs
584.8 g / 5.7 N
|
słaby uchwyt |
| 5 mm |
1631 Gs
163.1 mT
|
0.20 kg / 0.44 lbs
200.7 g / 2.0 N
|
słaby uchwyt |
| 10 mm |
534 Gs
53.4 mT
|
0.02 kg / 0.05 lbs
21.5 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
234 Gs
23.4 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
123 Gs
12.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 10x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.78 kg / 1.72 lbs
780.0 g / 7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 10x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 2 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 3 mm |
|
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 5 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 10 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 11 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 12 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 10x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
OK |
| 40 °C | -2.2% |
2.54 kg / 5.61 lbs
2542.8 g / 24.9 N
|
OK |
| 60 °C | -4.4% |
2.49 kg / 5.48 lbs
2485.6 g / 24.4 N
|
OK |
| 80 °C | -6.6% |
2.43 kg / 5.35 lbs
2428.4 g / 23.8 N
|
|
| 100 °C | -28.8% |
1.85 kg / 4.08 lbs
1851.2 g / 18.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 10x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.68 kg / 36.78 lbs
6 103 Gs
|
2.50 kg / 5.52 lbs
2502 g / 24.5 N
|
N/A |
| 1 mm |
13.52 kg / 29.80 lbs
10 567 Gs
|
2.03 kg / 4.47 lbs
2028 g / 19.9 N
|
12.17 kg / 26.82 lbs
~0 Gs
|
| 2 mm |
10.70 kg / 23.60 lbs
9 404 Gs
|
1.61 kg / 3.54 lbs
1606 g / 15.8 N
|
9.63 kg / 21.24 lbs
~0 Gs
|
| 3 mm |
8.35 kg / 18.40 lbs
8 304 Gs
|
1.25 kg / 2.76 lbs
1252 g / 12.3 N
|
7.51 kg / 16.56 lbs
~0 Gs
|
| 5 mm |
4.92 kg / 10.85 lbs
6 377 Gs
|
0.74 kg / 1.63 lbs
738 g / 7.2 N
|
4.43 kg / 9.77 lbs
~0 Gs
|
| 10 mm |
1.29 kg / 2.84 lbs
3 262 Gs
|
0.19 kg / 0.43 lbs
193 g / 1.9 N
|
1.16 kg / 2.56 lbs
~0 Gs
|
| 20 mm |
0.14 kg / 0.30 lbs
1 068 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
145 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 10x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 10x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
0.10 J | |
| 30 mm |
29.96 km/h
(8.32 m/s)
|
0.31 J | |
| 50 mm |
38.67 km/h
(10.74 m/s)
|
0.51 J | |
| 100 mm |
54.69 km/h
(15.19 m/s)
|
1.02 J |
Tabela 9: Parametry powłoki (trwałość)
MW 10x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 10x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 950 Mx | 49.5 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 10x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.60 kg | Standard |
| Woda (dno rzeki) |
2.98 kg
(+0.38 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.09
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi zaledwie ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Uczulenie na powłokę
Pewna grupa użytkowników wykazuje alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Rekomendujemy stosowanie rękawiczek ochronnych.
Nie zbliżaj do komputera
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Temperatura pracy
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Kruchy spiek
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Uwaga: zadławienie
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
