MW 10x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010005
GTIN: 5906301810049
Średnica Ø
10 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.60 kg / 25.51 N
Indukcja magnetyczna
587.44 mT / 5874 Gs
Powłoka
[NiCuNi] nikiel
6.15 ZŁ z VAT / szt. + cena za transport
5.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń do nas
+48 22 499 98 98
lub pisz korzystając z
formularz zgłoszeniowy
na stronie kontakt.
Właściwości i wygląd magnesu testujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 10x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010005 |
| GTIN | 5906301810049 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.60 kg / 25.51 N |
| Indukcja magnetyczna ~ ? | 587.44 mT / 5874 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Niniejsze wartości są bezpośredni efekt analizy fizycznej. Wartości oparte są na algorytmach dla klasy NdFeB. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
MW 10x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5870 Gs
587.0 mT
|
2.60 kg / 2600.0 g
25.5 N
|
średnie ryzyko |
| 1 mm |
4702 Gs
470.2 mT
|
1.67 kg / 1668.3 g
16.4 N
|
niskie ryzyko |
| 2 mm |
3645 Gs
364.5 mT
|
1.00 kg / 1002.8 g
9.8 N
|
niskie ryzyko |
| 3 mm |
2784 Gs
278.4 mT
|
0.58 kg / 584.8 g
5.7 N
|
niskie ryzyko |
| 5 mm |
1631 Gs
163.1 mT
|
0.20 kg / 200.7 g
2.0 N
|
niskie ryzyko |
| 10 mm |
534 Gs
53.4 mT
|
0.02 kg / 21.5 g
0.2 N
|
niskie ryzyko |
| 15 mm |
234 Gs
23.4 mT
|
0.00 kg / 4.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
123 Gs
12.3 mT
|
0.00 kg / 1.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 10x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 520.0 g
5.1 N
|
| 1 mm | Stal (~0.2) |
0.33 kg / 334.0 g
3.3 N
|
| 2 mm | Stal (~0.2) |
0.20 kg / 200.0 g
2.0 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 116.0 g
1.1 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.78 kg / 780.0 g
7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 520.0 g
5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 260.0 g
2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.30 kg / 1300.0 g
12.8 N
|
MW 10x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 260.0 g
2.6 N
|
| 1 mm |
|
0.65 kg / 650.0 g
6.4 N
|
| 2 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 5 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
| 10 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
MW 10x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.60 kg / 2600.0 g
25.5 N
|
OK |
| 40 °C | -2.2% |
2.54 kg / 2542.8 g
24.9 N
|
OK |
| 60 °C | -4.4% |
2.49 kg / 2485.6 g
24.4 N
|
OK |
| 80 °C | -6.6% |
2.43 kg / 2428.4 g
23.8 N
|
|
| 100 °C | -28.8% |
1.85 kg / 1851.2 g
18.2 N
|
MW 10x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.61 kg / 2611 g
25.6 N
11 764 Gs
|
N/A |
| 1 mm |
1.67 kg / 1668 g
16.4 N
10 567 Gs
|
1.50 kg / 1501 g
14.7 N
~0 Gs
|
| 2 mm |
1.00 kg / 1003 g
9.8 N
9 404 Gs
|
0.90 kg / 903 g
8.9 N
~0 Gs
|
| 3 mm |
0.58 kg / 585 g
5.7 N
8 304 Gs
|
0.53 kg / 526 g
5.2 N
~0 Gs
|
| 5 mm |
0.20 kg / 201 g
2.0 N
6 377 Gs
|
0.18 kg / 181 g
1.8 N
~0 Gs
|
| 10 mm |
0.02 kg / 22 g
0.2 N
3 262 Gs
|
0.02 kg / 19 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
1 068 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
145 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 10x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
0.10 J | |
| 30 mm |
29.96 km/h
(8.32 m/s)
|
0.31 J | |
| 50 mm |
38.67 km/h
(10.74 m/s)
|
0.51 J | |
| 100 mm |
54.69 km/h
(15.19 m/s)
|
1.02 J |
MW 10x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 950 Mx | 49.5 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
MW 10x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.60 kg | Standard |
| Woda (dno rzeki) |
2.98 kg
(+0.38 kg Zysk z wyporności)
|
+14.5% |
Inne produkty
Wady i zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, magnesy te cechują się następującymi zaletami:
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Mimo zalet, posiadają też wady:
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Siła trzymania 2.60 kg jest wynikiem testu laboratoryjnego wykonanego w następującej konfiguracji:
- z użyciem podłoża ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
Na skuteczność trzymania oddziałują konkretne warunki, głównie (od priorytetowych):
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pożaru
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Nośniki danych
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Bezpieczna praca
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Chronić przed dziećmi
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Uwaga medyczna
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Kompas i GPS
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Ryzyko rozmagnesowania
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Ostrzeżenie dla alergików
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Rekomendujemy używanie rękawic bezlateksowych.
Siła zgniatająca
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Ważne!
Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
