MW 45x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010074
GTIN/EAN: 5906301810735
Średnica Ø
45 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
417.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
68.98 kg / 676.73 N
Indukcja magnetyczna
521.39 mT / 5214 Gs
Powłoka
[NiCuNi] nikiel
180.10 ZŁ z VAT / szt. + cena za transport
146.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo daj znać przez
nasz formularz online
na naszej stronie.
Parametry i formę magnesów neodymowych wyliczysz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MW 45x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010074 |
| GTIN/EAN | 5906301810735 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 417.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 68.98 kg / 676.73 N |
| Indukcja magnetyczna ~ ? | 521.39 mT / 5214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Niniejsze dane stanowią wynik symulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 45x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5213 Gs
521.3 mT
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
miażdżący |
| 1 mm |
4982 Gs
498.2 mT
|
63.01 kg / 138.91 lbs
63010.2 g / 618.1 N
|
miażdżący |
| 2 mm |
4748 Gs
474.8 mT
|
57.23 kg / 126.18 lbs
57234.3 g / 561.5 N
|
miażdżący |
| 3 mm |
4516 Gs
451.6 mT
|
51.76 kg / 114.10 lbs
51756.9 g / 507.7 N
|
miażdżący |
| 5 mm |
4059 Gs
405.9 mT
|
41.82 kg / 92.19 lbs
41816.3 g / 410.2 N
|
miażdżący |
| 10 mm |
3027 Gs
302.7 mT
|
23.26 kg / 51.29 lbs
23264.1 g / 228.2 N
|
miażdżący |
| 15 mm |
2215 Gs
221.5 mT
|
12.45 kg / 27.45 lbs
12451.1 g / 122.1 N
|
miażdżący |
| 20 mm |
1619 Gs
161.9 mT
|
6.66 kg / 14.67 lbs
6656.2 g / 65.3 N
|
uwaga |
| 30 mm |
899 Gs
89.9 mT
|
2.05 kg / 4.52 lbs
2051.1 g / 20.1 N
|
uwaga |
| 50 mm |
340 Gs
34.0 mT
|
0.29 kg / 0.65 lbs
292.8 g / 2.9 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 45x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| 1 mm | Stal (~0.2) |
12.60 kg / 27.78 lbs
12602.0 g / 123.6 N
|
| 2 mm | Stal (~0.2) |
11.45 kg / 25.23 lbs
11446.0 g / 112.3 N
|
| 3 mm | Stal (~0.2) |
10.35 kg / 22.82 lbs
10352.0 g / 101.6 N
|
| 5 mm | Stal (~0.2) |
8.36 kg / 18.44 lbs
8364.0 g / 82.1 N
|
| 10 mm | Stal (~0.2) |
4.65 kg / 10.26 lbs
4652.0 g / 45.6 N
|
| 15 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 2.94 lbs
1332.0 g / 13.1 N
|
| 30 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 45x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.69 kg / 45.62 lbs
20694.0 g / 203.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.90 kg / 15.21 lbs
6898.0 g / 67.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.49 kg / 76.04 lbs
34490.0 g / 338.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 45x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.30 kg / 5.07 lbs
2299.3 g / 22.6 N
|
| 1 mm |
|
5.75 kg / 12.67 lbs
5748.3 g / 56.4 N
|
| 2 mm |
|
11.50 kg / 25.35 lbs
11496.7 g / 112.8 N
|
| 3 mm |
|
17.25 kg / 38.02 lbs
17245.0 g / 169.2 N
|
| 5 mm |
|
28.74 kg / 63.36 lbs
28741.7 g / 282.0 N
|
| 10 mm |
|
57.48 kg / 126.73 lbs
57483.3 g / 563.9 N
|
| 11 mm |
|
63.23 kg / 139.40 lbs
63231.7 g / 620.3 N
|
| 12 mm |
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 45x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
OK |
| 40 °C | -2.2% |
67.46 kg / 148.73 lbs
67462.4 g / 661.8 N
|
OK |
| 60 °C | -4.4% |
65.94 kg / 145.38 lbs
65944.9 g / 646.9 N
|
OK |
| 80 °C | -6.6% |
64.43 kg / 142.04 lbs
64427.3 g / 632.0 N
|
|
| 100 °C | -28.8% |
49.11 kg / 108.28 lbs
49113.8 g / 481.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 45x35 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
266.45 kg / 587.43 lbs
5 900 Gs
|
39.97 kg / 88.11 lbs
392.1 N
|
N/A |
| 1 mm |
254.93 kg / 562.03 lbs
10 198 Gs
|
38.24 kg / 84.30 lbs
375.1 N
|
229.44 kg / 505.82 lbs
~0 Gs
|
| 2 mm |
243.39 kg / 536.59 lbs
9 965 Gs
|
36.51 kg / 80.49 lbs
358.2 N
|
219.05 kg / 482.93 lbs
~0 Gs
|
| 3 mm |
232.10 kg / 511.70 lbs
9 731 Gs
|
34.82 kg / 76.76 lbs
341.5 N
|
208.89 kg / 460.53 lbs
~0 Gs
|
| 5 mm |
210.35 kg / 463.75 lbs
9 264 Gs
|
31.55 kg / 69.56 lbs
309.5 N
|
189.32 kg / 417.37 lbs
~0 Gs
|
| 10 mm |
161.53 kg / 356.11 lbs
8 118 Gs
|
24.23 kg / 53.42 lbs
237.7 N
|
145.37 kg / 320.49 lbs
~0 Gs
|
| 20 mm |
89.86 kg / 198.12 lbs
6 055 Gs
|
13.48 kg / 29.72 lbs
132.2 N
|
80.88 kg / 178.30 lbs
~0 Gs
|
| 50 mm |
14.04 kg / 30.96 lbs
2 394 Gs
|
2.11 kg / 4.64 lbs
20.7 N
|
12.64 kg / 27.87 lbs
~0 Gs
|
| 60 mm |
7.92 kg / 17.47 lbs
1 798 Gs
|
1.19 kg / 2.62 lbs
11.7 N
|
7.13 kg / 15.72 lbs
~0 Gs
|
| 70 mm |
4.63 kg / 10.21 lbs
1 375 Gs
|
0.69 kg / 1.53 lbs
6.8 N
|
4.17 kg / 9.19 lbs
~0 Gs
|
| 80 mm |
2.80 kg / 6.18 lbs
1 070 Gs
|
0.42 kg / 0.93 lbs
4.1 N
|
2.52 kg / 5.56 lbs
~0 Gs
|
| 90 mm |
1.75 kg / 3.87 lbs
846 Gs
|
0.26 kg / 0.58 lbs
2.6 N
|
1.58 kg / 3.48 lbs
~0 Gs
|
| 100 mm |
1.13 kg / 2.49 lbs
679 Gs
|
0.17 kg / 0.37 lbs
1.7 N
|
1.02 kg / 2.24 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 45x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 16.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 12.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 45x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.46 km/h
(4.29 m/s)
|
3.85 J | |
| 30 mm |
22.87 km/h
(6.35 m/s)
|
8.42 J | |
| 50 mm |
29.06 km/h
(8.07 m/s)
|
13.61 J | |
| 100 mm |
41.00 km/h
(11.39 m/s)
|
27.07 J |
Tabela 9: Parametry powłoki (trwałość)
MW 45x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 45x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 83 921 Mx | 839.2 µWb |
| Współczynnik Pc | 0.78 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 45x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 68.98 kg | Standard |
| Woda (dno rzeki) |
78.98 kg
(+10.00 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.78
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Poważne obrażenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Pole magnetyczne a elektronika
Bardzo silne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Ryzyko rozmagnesowania
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Produkt nie dla dzieci
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
