MPL 30x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020143
GTIN/EAN: 5906301811497
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.86 kg / 86.90 N
Indukcja magnetyczna
220.03 mT / 2200 Gs
Powłoka
[NiCuNi] nikiel
9.10 ZŁ z VAT / szt. + cena za transport
7.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz
na stronie kontaktowej.
Moc i wygląd magnesu neodymowego testujesz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 30x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020143 |
| GTIN/EAN | 5906301811497 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.86 kg / 86.90 N |
| Indukcja magnetyczna ~ ? | 220.03 mT / 2200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze informacje są wynik symulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
MPL 30x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2200 Gs
220.0 mT
|
8.86 kg / 8860.0 g
86.9 N
|
uwaga |
| 1 mm |
2092 Gs
209.2 mT
|
8.01 kg / 8013.9 g
78.6 N
|
uwaga |
| 2 mm |
1961 Gs
196.1 mT
|
7.04 kg / 7042.1 g
69.1 N
|
uwaga |
| 3 mm |
1817 Gs
181.7 mT
|
6.04 kg / 6041.8 g
59.3 N
|
uwaga |
| 5 mm |
1516 Gs
151.6 mT
|
4.21 kg / 4209.6 g
41.3 N
|
uwaga |
| 10 mm |
892 Gs
89.2 mT
|
1.46 kg / 1456.2 g
14.3 N
|
niskie ryzyko |
| 15 mm |
519 Gs
51.9 mT
|
0.49 kg / 492.4 g
4.8 N
|
niskie ryzyko |
| 20 mm |
313 Gs
31.3 mT
|
0.18 kg / 179.8 g
1.8 N
|
niskie ryzyko |
| 30 mm |
132 Gs
13.2 mT
|
0.03 kg / 31.9 g
0.3 N
|
niskie ryzyko |
| 50 mm |
37 Gs
3.7 mT
|
0.00 kg / 2.5 g
0.0 N
|
niskie ryzyko |
MPL 30x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.77 kg / 1772.0 g
17.4 N
|
| 1 mm | Stal (~0.2) |
1.60 kg / 1602.0 g
15.7 N
|
| 2 mm | Stal (~0.2) |
1.41 kg / 1408.0 g
13.8 N
|
| 3 mm | Stal (~0.2) |
1.21 kg / 1208.0 g
11.9 N
|
| 5 mm | Stal (~0.2) |
0.84 kg / 842.0 g
8.3 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 292.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 98.0 g
1.0 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 30x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.66 kg / 2658.0 g
26.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.77 kg / 1772.0 g
17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 886.0 g
8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.43 kg / 4430.0 g
43.5 N
|
MPL 30x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 886.0 g
8.7 N
|
| 1 mm |
|
2.22 kg / 2215.0 g
21.7 N
|
| 2 mm |
|
4.43 kg / 4430.0 g
43.5 N
|
| 5 mm |
|
8.86 kg / 8860.0 g
86.9 N
|
| 10 mm |
|
8.86 kg / 8860.0 g
86.9 N
|
MPL 30x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.86 kg / 8860.0 g
86.9 N
|
OK |
| 40 °C | -2.2% |
8.67 kg / 8665.1 g
85.0 N
|
OK |
| 60 °C | -4.4% |
8.47 kg / 8470.2 g
83.1 N
|
|
| 80 °C | -6.6% |
8.28 kg / 8275.2 g
81.2 N
|
|
| 100 °C | -28.8% |
6.31 kg / 6308.3 g
61.9 N
|
MPL 30x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.90 kg / 17902 g
175.6 N
3 715 Gs
|
N/A |
| 1 mm |
17.10 kg / 17097 g
167.7 N
4 300 Gs
|
15.39 kg / 15387 g
150.9 N
~0 Gs
|
| 2 mm |
16.19 kg / 16192 g
158.8 N
4 184 Gs
|
14.57 kg / 14573 g
143.0 N
~0 Gs
|
| 3 mm |
15.23 kg / 15228 g
149.4 N
4 058 Gs
|
13.71 kg / 13706 g
134.5 N
~0 Gs
|
| 5 mm |
13.22 kg / 13216 g
129.6 N
3 780 Gs
|
11.89 kg / 11894 g
116.7 N
~0 Gs
|
| 10 mm |
8.51 kg / 8506 g
83.4 N
3 033 Gs
|
7.66 kg / 7655 g
75.1 N
~0 Gs
|
| 20 mm |
2.94 kg / 2942 g
28.9 N
1 784 Gs
|
2.65 kg / 2648 g
26.0 N
~0 Gs
|
| 50 mm |
0.15 kg / 146 g
1.4 N
398 Gs
|
0.13 kg / 132 g
1.3 N
~0 Gs
|
MPL 30x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 30x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.97 km/h
(6.10 m/s)
|
0.42 J | |
| 30 mm |
34.74 km/h
(9.65 m/s)
|
1.05 J | |
| 50 mm |
44.76 km/h
(12.43 m/s)
|
1.74 J | |
| 100 mm |
63.29 km/h
(17.58 m/s)
|
3.48 J |
MPL 30x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
MPL 30x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.86 kg | Standard |
| Woda (dno rzeki) |
10.14 kg
(+1.28 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki powłoce (NiCuNi, Au, srebro) mają estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem blachy ze stali niskowęglowej, która służy jako zwora magnetyczna
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na działanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Uczulenie na powłokę
Niektóre osoby ma alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
Ryzyko pożaru
Pył powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Rozruszniki serca
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
