MPL 30x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020143
GTIN/EAN: 5906301811497
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.86 kg / 86.90 N
Indukcja magnetyczna
220.03 mT / 2200 Gs
Powłoka
[NiCuNi] nikiel
9.10 ZŁ z VAT / szt. + cena za transport
7.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Siłę i wygląd elementów magnetycznych obliczysz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MPL 30x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020143 |
| GTIN/EAN | 5906301811497 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.86 kg / 86.90 N |
| Indukcja magnetyczna ~ ? | 220.03 mT / 2200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze wartości stanowią bezpośredni efekt symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 30x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2200 Gs
220.0 mT
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
średnie ryzyko |
| 1 mm |
2092 Gs
209.2 mT
|
8.01 kg / 17.67 lbs
8013.9 g / 78.6 N
|
średnie ryzyko |
| 2 mm |
1961 Gs
196.1 mT
|
7.04 kg / 15.53 lbs
7042.1 g / 69.1 N
|
średnie ryzyko |
| 3 mm |
1817 Gs
181.7 mT
|
6.04 kg / 13.32 lbs
6041.8 g / 59.3 N
|
średnie ryzyko |
| 5 mm |
1516 Gs
151.6 mT
|
4.21 kg / 9.28 lbs
4209.6 g / 41.3 N
|
średnie ryzyko |
| 10 mm |
892 Gs
89.2 mT
|
1.46 kg / 3.21 lbs
1456.2 g / 14.3 N
|
niskie ryzyko |
| 15 mm |
519 Gs
51.9 mT
|
0.49 kg / 1.09 lbs
492.4 g / 4.8 N
|
niskie ryzyko |
| 20 mm |
313 Gs
31.3 mT
|
0.18 kg / 0.40 lbs
179.8 g / 1.8 N
|
niskie ryzyko |
| 30 mm |
132 Gs
13.2 mT
|
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
37 Gs
3.7 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 30x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| 1 mm | Stal (~0.2) |
1.60 kg / 3.53 lbs
1602.0 g / 15.7 N
|
| 2 mm | Stal (~0.2) |
1.41 kg / 3.10 lbs
1408.0 g / 13.8 N
|
| 3 mm | Stal (~0.2) |
1.21 kg / 2.66 lbs
1208.0 g / 11.9 N
|
| 5 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
292.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
98.0 g / 1.0 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 30x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.66 kg / 5.86 lbs
2658.0 g / 26.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 1 mm |
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
| 2 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 3 mm |
|
6.65 kg / 14.65 lbs
6645.0 g / 65.2 N
|
| 5 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 10 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 11 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
| 12 mm |
|
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 30x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.86 kg / 19.53 lbs
8860.0 g / 86.9 N
|
OK |
| 40 °C | -2.2% |
8.67 kg / 19.10 lbs
8665.1 g / 85.0 N
|
OK |
| 60 °C | -4.4% |
8.47 kg / 18.67 lbs
8470.2 g / 83.1 N
|
|
| 80 °C | -6.6% |
8.28 kg / 18.24 lbs
8275.2 g / 81.2 N
|
|
| 100 °C | -28.8% |
6.31 kg / 13.91 lbs
6308.3 g / 61.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 30x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.90 kg / 39.47 lbs
3 715 Gs
|
2.69 kg / 5.92 lbs
2685 g / 26.3 N
|
N/A |
| 1 mm |
17.10 kg / 37.69 lbs
4 300 Gs
|
2.56 kg / 5.65 lbs
2565 g / 25.2 N
|
15.39 kg / 33.92 lbs
~0 Gs
|
| 2 mm |
16.19 kg / 35.70 lbs
4 184 Gs
|
2.43 kg / 5.35 lbs
2429 g / 23.8 N
|
14.57 kg / 32.13 lbs
~0 Gs
|
| 3 mm |
15.23 kg / 33.57 lbs
4 058 Gs
|
2.28 kg / 5.04 lbs
2284 g / 22.4 N
|
13.71 kg / 30.22 lbs
~0 Gs
|
| 5 mm |
13.22 kg / 29.14 lbs
3 780 Gs
|
1.98 kg / 4.37 lbs
1982 g / 19.4 N
|
11.89 kg / 26.22 lbs
~0 Gs
|
| 10 mm |
8.51 kg / 18.75 lbs
3 033 Gs
|
1.28 kg / 2.81 lbs
1276 g / 12.5 N
|
7.66 kg / 16.88 lbs
~0 Gs
|
| 20 mm |
2.94 kg / 6.49 lbs
1 784 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 50 mm |
0.15 kg / 0.32 lbs
398 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.14 lbs
264 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.07 lbs
183 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
131 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
97 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
73 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 30x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.97 km/h
(6.10 m/s)
|
0.42 J | |
| 30 mm |
34.74 km/h
(9.65 m/s)
|
1.05 J | |
| 50 mm |
44.76 km/h
(12.43 m/s)
|
1.74 J | |
| 100 mm |
63.29 km/h
(17.58 m/s)
|
3.48 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 30x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 30x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.86 kg | Standard |
| Woda (dno rzeki) |
10.14 kg
(+1.28 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
UMP 75x25 [M10x3] GW F200 GOLD DUAL / N42 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia ucieka na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Reakcje alergiczne
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Rozprysk materiału
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Zakaz obróbki
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
