Magnesy neodymowe – najmocniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do zastosowań domowych, garażu oraz zadań przemysłowych. Sprawdź naszą ofertę dostępne od ręki.

sprawdź katalog magnesów

Magnet fishing: solidne zestawy F200/F400

Zacznij swoje hobby z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Są niezastąpione przy mocowaniu lamp, sensorów oraz reklam.

sprawdź dostępne gwinty

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 7x7x3 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020176

GTIN/EAN: 5906301811824

5.00

Długość

7 mm [±0,1 mm]

Szerokość

7 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

1.1 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.60 kg / 15.70 N

Indukcja magnetyczna

376.99 mT / 3770 Gs

Powłoka

[NiCuNi] nikiel

0.541 z VAT / szt. + cena za transport

0.440 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.440 ZŁ
0.541 ZŁ
cena od 1400 szt.
0.414 ZŁ
0.509 ZŁ
cena od 5700 szt.
0.387 ZŁ
0.476 ZŁ
Nie wiesz co kupić?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 alternatywnie zostaw wiadomość za pomocą formularz kontaktowy w sekcji kontakt.
Udźwig a także wygląd magnesu zobaczysz dzięki naszemu naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Dane - MPL 7x7x3 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 7x7x3 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020176
GTIN/EAN 5906301811824
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 7 mm [±0,1 mm]
Szerokość 7 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 1.1 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.60 kg / 15.70 N
Indukcja magnetyczna ~ ? 376.99 mT / 3770 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 7x7x3 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu neodymowego - dane

Niniejsze informacje są bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 7x7x3 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3767 Gs
376.7 mT
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
słaby uchwyt
1 mm 2886 Gs
288.6 mT
0.94 kg / 2.07 lbs
939.5 g / 9.2 N
słaby uchwyt
2 mm 2048 Gs
204.8 mT
0.47 kg / 1.04 lbs
472.8 g / 4.6 N
słaby uchwyt
3 mm 1412 Gs
141.2 mT
0.22 kg / 0.50 lbs
224.8 g / 2.2 N
słaby uchwyt
5 mm 686 Gs
68.6 mT
0.05 kg / 0.12 lbs
53.0 g / 0.5 N
słaby uchwyt
10 mm 165 Gs
16.5 mT
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
słaby uchwyt
15 mm 60 Gs
6.0 mT
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
słaby uchwyt
20 mm 28 Gs
2.8 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
słaby uchwyt
30 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt

Tabela 2: Siła równoległa zsuwania (pion)
MPL 7x7x3 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.32 kg / 0.71 lbs
320.0 g / 3.1 N
1 mm Stal (~0.2) 0.19 kg / 0.41 lbs
188.0 g / 1.8 N
2 mm Stal (~0.2) 0.09 kg / 0.21 lbs
94.0 g / 0.9 N
3 mm Stal (~0.2) 0.04 kg / 0.10 lbs
44.0 g / 0.4 N
5 mm Stal (~0.2) 0.01 kg / 0.02 lbs
10.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 7x7x3 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.80 kg / 1.76 lbs
800.0 g / 7.8 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 7x7x3 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
1 mm
25%
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
2 mm
50%
0.80 kg / 1.76 lbs
800.0 g / 7.8 N
3 mm
75%
1.20 kg / 2.65 lbs
1200.0 g / 11.8 N
5 mm
100%
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
10 mm
100%
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
11 mm
100%
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
12 mm
100%
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N

Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 7x7x3 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
OK
40 °C -2.2% 1.56 kg / 3.45 lbs
1564.8 g / 15.4 N
OK
60 °C -4.4% 1.53 kg / 3.37 lbs
1529.6 g / 15.0 N
80 °C -6.6% 1.49 kg / 3.29 lbs
1494.4 g / 14.7 N
100 °C -28.8% 1.14 kg / 2.51 lbs
1139.2 g / 11.2 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 7x7x3 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 4.29 kg / 9.45 lbs
5 173 Gs
0.64 kg / 1.42 lbs
643 g / 6.3 N
N/A
1 mm 3.38 kg / 7.44 lbs
6 685 Gs
0.51 kg / 1.12 lbs
506 g / 5.0 N
3.04 kg / 6.70 lbs
~0 Gs
2 mm 2.52 kg / 5.55 lbs
5 773 Gs
0.38 kg / 0.83 lbs
378 g / 3.7 N
2.27 kg / 4.99 lbs
~0 Gs
3 mm 1.81 kg / 3.99 lbs
4 893 Gs
0.27 kg / 0.60 lbs
271 g / 2.7 N
1.63 kg / 3.59 lbs
~0 Gs
5 mm 0.88 kg / 1.93 lbs
3 405 Gs
0.13 kg / 0.29 lbs
131 g / 1.3 N
0.79 kg / 1.74 lbs
~0 Gs
10 mm 0.14 kg / 0.31 lbs
1 372 Gs
0.02 kg / 0.05 lbs
21 g / 0.2 N
0.13 kg / 0.28 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
329 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
30 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
18 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 7x7x3 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.0 cm
Implant słuchowy 10 Gs (1.0 mT) 3.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Immobilizer 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 7x7x3 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 38.51 km/h
(10.70 m/s)
0.06 J
30 mm 66.62 km/h
(18.51 m/s)
0.19 J
50 mm 86.01 km/h
(23.89 m/s)
0.31 J
100 mm 121.63 km/h
(33.79 m/s)
0.63 J

Tabela 9: Parametry powłoki (trwałość)
MPL 7x7x3 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MPL 7x7x3 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 909 Mx 19.1 µWb
Współczynnik Pc 0.48 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 7x7x3 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.60 kg Standard
Woda (dno rzeki) 1.83 kg
(+0.23 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.

2. Grubość podłoża

*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Praca w cieple

*Dla materiału N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020176-2026
Kalkulator miar
Udźwig magnesu

Pole magnetyczne

Zobacz też inne produkty

Produkt ten to ekstremalnie mocny magnes płytkowy wykonany z materiału NdFeB, co przy wymiarach 7x7x3 mm i wadze 1.1 g gwarantuje najwyższą jakość połączenia. Ten prostopadłościan o sile 15.70 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 7x7x3 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 7x7x3 mm, co przy wadze 1.1 g czyni go elementem o wysokiej gęstości energii. Kluczowym parametrem jest tutaj udźwig wynoszący około 1.60 kg (siła ~15.70 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne istotne właściwości, w tym::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
  • Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
  • Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Słabe strony

Mimo zalet, posiadają też wady:
  • Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
  • Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.

Charakterystyka udźwigu

Udźwig maksymalny dla magnesu neodymowego – od czego zależy?

Widoczny w opisie parametr udźwigu dotyczy wartości maksymalnej, którą zmierzono w idealnych warunkach testowych, co oznacza test:
  • z zastosowaniem płyty ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
  • posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
  • z powierzchnią oczyszczoną i gładką
  • przy całkowitym braku odstępu (bez farby)
  • podczas odrywania w kierunku pionowym do powierzchni mocowania
  • w standardowej temperaturze otoczenia

Determinanty praktycznego udźwigu magnesu

Podczas codziennego użytkowania, faktyczna siła trzymania zależy od kilku kluczowych aspektów, które przedstawiamy od najważniejszych:
  • Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
  • Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
  • Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
  • Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.

Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje siłę trzymania.

Środki ostrożności podczas pracy z magnesami neodymowymi
Pył jest łatwopalny

Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.

Uszkodzenia ciała

Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

Siła neodymu

Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.

Podatność na pękanie

Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.

Zagrożenie dla najmłodszych

Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.

Ostrzeżenie dla alergików

Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.

Bezpieczny dystans

Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).

Implanty kardiologiczne

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Maksymalna temperatura

Standardowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.

Smartfony i tablety

Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.

Ostrzeżenie! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98