MPL 7x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020176
GTIN/EAN: 5906301811824
Długość
7 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.1 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.60 kg / 15.70 N
Indukcja magnetyczna
376.99 mT / 3770 Gs
Powłoka
[NiCuNi] nikiel
0.541 ZŁ z VAT / szt. + cena za transport
0.440 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie napisz korzystając z
nasz formularz online
w sekcji kontakt.
Masę i kształt magnesu wyliczysz u nas w
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MPL 7x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 7x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020176 |
| GTIN/EAN | 5906301811824 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 7 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.1 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.60 kg / 15.70 N |
| Indukcja magnetyczna ~ ? | 376.99 mT / 3770 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe wartości są bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 7x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3767 Gs
376.7 mT
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
słaby uchwyt |
| 1 mm |
2886 Gs
288.6 mT
|
0.94 kg / 2.07 lbs
939.5 g / 9.2 N
|
słaby uchwyt |
| 2 mm |
2048 Gs
204.8 mT
|
0.47 kg / 1.04 lbs
472.8 g / 4.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.22 kg / 0.50 lbs
224.8 g / 2.2 N
|
słaby uchwyt |
| 5 mm |
686 Gs
68.6 mT
|
0.05 kg / 0.12 lbs
53.0 g / 0.5 N
|
słaby uchwyt |
| 10 mm |
165 Gs
16.5 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
60 Gs
6.0 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 7x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 1 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 7x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.80 kg / 1.76 lbs
800.0 g / 7.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 7x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 1 mm |
|
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 2 mm |
|
0.80 kg / 1.76 lbs
800.0 g / 7.8 N
|
| 3 mm |
|
1.20 kg / 2.65 lbs
1200.0 g / 11.8 N
|
| 5 mm |
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
| 10 mm |
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
| 11 mm |
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
| 12 mm |
|
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 7x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.60 kg / 3.53 lbs
1600.0 g / 15.7 N
|
OK |
| 40 °C | -2.2% |
1.56 kg / 3.45 lbs
1564.8 g / 15.4 N
|
OK |
| 60 °C | -4.4% |
1.53 kg / 3.37 lbs
1529.6 g / 15.0 N
|
|
| 80 °C | -6.6% |
1.49 kg / 3.29 lbs
1494.4 g / 14.7 N
|
|
| 100 °C | -28.8% |
1.14 kg / 2.51 lbs
1139.2 g / 11.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 7x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.29 kg / 9.45 lbs
5 173 Gs
|
0.64 kg / 1.42 lbs
643 g / 6.3 N
|
N/A |
| 1 mm |
3.38 kg / 7.44 lbs
6 685 Gs
|
0.51 kg / 1.12 lbs
506 g / 5.0 N
|
3.04 kg / 6.70 lbs
~0 Gs
|
| 2 mm |
2.52 kg / 5.55 lbs
5 773 Gs
|
0.38 kg / 0.83 lbs
378 g / 3.7 N
|
2.27 kg / 4.99 lbs
~0 Gs
|
| 3 mm |
1.81 kg / 3.99 lbs
4 893 Gs
|
0.27 kg / 0.60 lbs
271 g / 2.7 N
|
1.63 kg / 3.59 lbs
~0 Gs
|
| 5 mm |
0.88 kg / 1.93 lbs
3 405 Gs
|
0.13 kg / 0.29 lbs
131 g / 1.3 N
|
0.79 kg / 1.74 lbs
~0 Gs
|
| 10 mm |
0.14 kg / 0.31 lbs
1 372 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
329 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
8 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 7x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 7x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.51 km/h
(10.70 m/s)
|
0.06 J | |
| 30 mm |
66.62 km/h
(18.51 m/s)
|
0.19 J | |
| 50 mm |
86.01 km/h
(23.89 m/s)
|
0.31 J | |
| 100 mm |
121.63 km/h
(33.79 m/s)
|
0.63 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 7x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 7x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 909 Mx | 19.1 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 7x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.60 kg | Standard |
| Woda (dno rzeki) |
1.83 kg
(+0.23 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, Au, Ag) mają estetyczny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- z powierzchnią wolną od rys
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda stal nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Zagrożenie wybuchem pyłu
Pył generowany podczas szlifowania magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
