MPL 7x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020176
GTIN: 5906301811824
Długość
7 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.1 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.60 kg / 15.70 N
Indukcja magnetyczna
376.99 mT / 3770 Gs
Powłoka
[NiCuNi] nikiel
0.541 ZŁ z VAT / szt. + cena za transport
0.440 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz
w sekcji kontakt.
Właściwości a także formę magnesów obliczysz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 7x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 7x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020176 |
| GTIN | 5906301811824 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 7 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.1 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.60 kg / 15.70 N |
| Indukcja magnetyczna ~ ? | 376.99 mT / 3770 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe informacje są rezultat analizy fizycznej. Wyniki bazują na modelach dla klasy NdFeB. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
MPL 7x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3767 Gs
376.7 mT
|
1.60 kg / 1600.0 g
15.7 N
|
słaby uchwyt |
| 1 mm |
2886 Gs
288.6 mT
|
0.94 kg / 939.5 g
9.2 N
|
słaby uchwyt |
| 2 mm |
2048 Gs
204.8 mT
|
0.47 kg / 472.8 g
4.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.22 kg / 224.8 g
2.2 N
|
słaby uchwyt |
| 5 mm |
686 Gs
68.6 mT
|
0.05 kg / 53.0 g
0.5 N
|
słaby uchwyt |
| 10 mm |
165 Gs
16.5 mT
|
0.00 kg / 3.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
60 Gs
6.0 mT
|
0.00 kg / 0.4 g
0.0 N
|
słaby uchwyt |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MPL 7x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.32 kg / 320.0 g
3.1 N
|
| 1 mm | Stal (~0.2) |
0.19 kg / 188.0 g
1.8 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 94.0 g
0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 7x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.48 kg / 480.0 g
4.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.32 kg / 320.0 g
3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 160.0 g
1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.80 kg / 800.0 g
7.8 N
|
MPL 7x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 160.0 g
1.6 N
|
| 1 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 2 mm |
|
0.80 kg / 800.0 g
7.8 N
|
| 5 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
| 10 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
MPL 7x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.60 kg / 1600.0 g
15.7 N
|
OK |
| 40 °C | -2.2% |
1.56 kg / 1564.8 g
15.4 N
|
OK |
| 60 °C | -4.4% |
1.53 kg / 1529.6 g
15.0 N
|
|
| 80 °C | -6.6% |
1.49 kg / 1494.4 g
14.7 N
|
|
| 100 °C | -28.8% |
1.14 kg / 1139.2 g
11.2 N
|
MPL 7x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.32 kg / 4323 g
42.4 N
12 384 Gs
|
N/A |
| 1 mm |
0.94 kg / 939 g
9.2 N
6 685 Gs
|
0.85 kg / 846 g
8.3 N
~0 Gs
|
| 2 mm |
0.47 kg / 473 g
4.6 N
5 773 Gs
|
0.43 kg / 426 g
4.2 N
~0 Gs
|
| 3 mm |
0.22 kg / 225 g
2.2 N
4 893 Gs
|
0.20 kg / 202 g
2.0 N
~0 Gs
|
| 5 mm |
0.05 kg / 53 g
0.5 N
3 405 Gs
|
0.05 kg / 48 g
0.5 N
~0 Gs
|
| 10 mm |
0.00 kg / 3 g
0.0 N
1 372 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
329 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 7x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 7x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.51 km/h
(10.70 m/s)
|
0.06 J | |
| 30 mm |
66.62 km/h
(18.51 m/s)
|
0.19 J | |
| 50 mm |
86.01 km/h
(23.89 m/s)
|
0.31 J | |
| 100 mm |
121.63 km/h
(33.79 m/s)
|
0.63 J |
MPL 7x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 7x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 909 Mx | 19.1 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
MPL 7x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.60 kg | Standard |
| Woda (dno rzeki) |
1.83 kg
(+0.23 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych NdFeB.
Magnesy neodymowe to nie tylko moc przyciągania, ale także inne kluczowe właściwości, w tym::
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Warto znać też słabe strony magnesów neodymowych:
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Maksymalny udźwig magnesu – co się na to składa?
Siła oderwania została określona dla warunków idealnego styku, obejmującej:
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez powłok)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
Na realną siłę wpływają parametry środowiska pracy, głównie (od najważniejszych):
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda płyta nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Nośniki danych
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Magnesy są kruche
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Dla uczulonych
Pewna grupa użytkowników wykazuje nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Sugerujemy noszenie rękawic bezlateksowych.
Interferencja medyczna
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Zagrożenie!
Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesami.
