Magnesy neodymowe: siła, której szukasz

Szukasz ogromnej mocy w małym rozmiarze? Oferujemy bogatą gamę magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment w naszym magazynie.

poznaj cennik i wymiary

Magnet fishing: solidne zestawy F200/F400

Odkryj pasję związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w rzekach i jeziorach.

wybierz swój magnes do wody

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na magazynach. Są niezastąpione przy instalacji oświetlenia, czujników oraz reklam.

sprawdź parametry techniczne

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 2 dni

MW 4x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010075

GTIN/EAN: 5906301810742

5.00

Średnica Ø

4 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

0.94 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.32 kg / 3.16 N

Indukcja magnetyczna

606.05 mT / 6061 Gs

Powłoka

[NiCuNi] nikiel

0.800 z VAT / szt. + cena za transport

0.650 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.650 ZŁ
0.800 ZŁ
cena od 1000 szt.
0.611 ZŁ
0.752 ZŁ
cena od 3900 szt.
0.572 ZŁ
0.704 ZŁ
Masz problem z wyborem?

Zadzwoń do nas +48 22 499 98 98 alternatywnie pisz przez formularz zgłoszeniowy na stronie kontaktowej.
Masę i budowę elementów magnetycznych zweryfikujesz u nas w narzędziu online do obliczeń.

Zamów do 14:00, a wyślemy dziś!

Specyfikacja techniczna - MW 4x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 4x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010075
GTIN/EAN 5906301810742
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 4 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 0.94 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.32 kg / 3.16 N
Indukcja magnetyczna ~ ? 606.05 mT / 6061 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 4x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - dane

Poniższe dane są bezpośredni efekt analizy fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 4x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 6049 Gs
604.9 mT
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
niskie ryzyko
1 mm 3327 Gs
332.7 mT
0.10 kg / 0.21 lbs
96.8 g / 0.9 N
niskie ryzyko
2 mm 1732 Gs
173.2 mT
0.03 kg / 0.06 lbs
26.2 g / 0.3 N
niskie ryzyko
3 mm 969 Gs
96.9 mT
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
niskie ryzyko
5 mm 389 Gs
38.9 mT
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
niskie ryzyko
10 mm 90 Gs
9.0 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
15 mm 35 Gs
3.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
20 mm 17 Gs
1.7 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
30 mm 6 Gs
0.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła obsunięcia (ściana)
MW 4x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.06 kg / 0.14 lbs
64.0 g / 0.6 N
1 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
2 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 4x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.16 kg / 0.35 lbs
160.0 g / 1.6 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 4x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
1 mm
25%
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
2 mm
50%
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
3 mm
75%
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
5 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
10 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
11 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
12 mm
100%
0.32 kg / 0.71 lbs
320.0 g / 3.1 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 4x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.32 kg / 0.71 lbs
320.0 g / 3.1 N
OK
40 °C -2.2% 0.31 kg / 0.69 lbs
313.0 g / 3.1 N
OK
60 °C -4.4% 0.31 kg / 0.67 lbs
305.9 g / 3.0 N
OK
80 °C -6.6% 0.30 kg / 0.66 lbs
298.9 g / 2.9 N
100 °C -28.8% 0.23 kg / 0.50 lbs
227.8 g / 2.2 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 4x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.83 kg / 6.25 lbs
6 138 Gs
0.43 kg / 0.94 lbs
425 g / 4.2 N
N/A
1 mm 1.63 kg / 3.59 lbs
9 174 Gs
0.24 kg / 0.54 lbs
244 g / 2.4 N
1.47 kg / 3.23 lbs
~0 Gs
2 mm 0.86 kg / 1.89 lbs
6 655 Gs
0.13 kg / 0.28 lbs
129 g / 1.3 N
0.77 kg / 1.70 lbs
~0 Gs
3 mm 0.44 kg / 0.97 lbs
4 777 Gs
0.07 kg / 0.15 lbs
66 g / 0.7 N
0.40 kg / 0.88 lbs
~0 Gs
5 mm 0.13 kg / 0.28 lbs
2 561 Gs
0.02 kg / 0.04 lbs
19 g / 0.2 N
0.11 kg / 0.25 lbs
~0 Gs
10 mm 0.01 kg / 0.03 lbs
778 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
179 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 4x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.5 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 4x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 18.61 km/h
(5.17 m/s)
0.01 J
30 mm 32.23 km/h
(8.95 m/s)
0.04 J
50 mm 41.61 km/h
(11.56 m/s)
0.06 J
100 mm 58.84 km/h
(16.35 m/s)
0.13 J

Tabela 9: Odporność na korozję
MW 4x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 4x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 864 Mx 8.6 µWb
Współczynnik Pc 1.31 Wysoki (Stabilny)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 4x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.32 kg Standard
Woda (dno rzeki) 0.37 kg
(+0.05 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.

3. Stabilność termiczna

*W klasie N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010075-2026
Szybki konwerter jednostek
Udźwig magnesu

Pole magnetyczne

Zobacz też inne propozycje

Prezentowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø4x10 mm gwarantuje najwyższą gęstość energii. Model MW 4x10 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 0.32 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w modelarstwie, zaawansowanej robotyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki sile przyciągania 3.16 N przy wadze zaledwie 0.94 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego profesjonalnego komponentu. Dla zapewnienia stabilności w automatyce, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla profesjonalnych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz stabilność pracy. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø4x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 4 mm i wysokość 10 mm. Wartość 3.16 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 0.94 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 4 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Mocne strony

Oprócz potężną siłą, te produkty oferują wiele innych atutów::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
  • Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Charakterystyka udźwigu

Maksymalna siła przyciągania magnesuod czego zależy?

Siła trzymania 0.32 kg jest rezultatem pomiaru zrealizowanego w warunkach wzorcowych:
  • przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
  • której grubość to min. 10 mm
  • z powierzchnią wolną od rys
  • w warunkach idealnego przylegania (metal do metalu)
  • przy osiowym kierunku działania siły (kąt 90 stopni)
  • w standardowej temperaturze otoczenia

Udźwig w warunkach rzeczywistych – czynniki

Warto wiedzieć, iż siła w aplikacji może być niższe zależnie od następujących czynników, w kolejności ważności:
  • Szczelina powietrzna (między magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
  • Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
  • Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
  • Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża nośność.

Zasady BHP dla użytkowników magnesów
Urządzenia elektroniczne

Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.

Magnesy są kruche

Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.

Niebezpieczeństwo dla rozruszników

Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.

Zagrożenie dla najmłodszych

Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.

Uczulenie na powłokę

Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.

Moc przyciągania

Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Limity termiczne

Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Nie wierć w magnesach

Pył powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.

Wpływ na smartfony

Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.

Niebezpieczeństwo przytrzaśnięcia

Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

Ważne! Więcej informacji o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98