MW 38x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010061
GTIN/EAN: 5906301810605
Średnica Ø
38 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
127.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.08 kg / 393.18 N
Indukcja magnetyczna
384.07 mT / 3841 Gs
Powłoka
[NiCuNi] nikiel
70.00 ZŁ z VAT / szt. + cena za transport
56.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub daj znać za pomocą
nasz formularz online
na stronie kontakt.
Masę oraz kształt magnesów neodymowych zweryfikujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 38x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010061 |
| GTIN/EAN | 5906301810605 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 127.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.08 kg / 393.18 N |
| Indukcja magnetyczna ~ ? | 384.07 mT / 3841 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią wynik kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 38x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3840 Gs
384.0 mT
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
krytyczny poziom |
| 1 mm |
3668 Gs
366.8 mT
|
36.56 kg / 80.61 lbs
36563.4 g / 358.7 N
|
krytyczny poziom |
| 2 mm |
3485 Gs
348.5 mT
|
33.01 kg / 72.78 lbs
33011.6 g / 323.8 N
|
krytyczny poziom |
| 3 mm |
3297 Gs
329.7 mT
|
29.55 kg / 65.14 lbs
29545.5 g / 289.8 N
|
krytyczny poziom |
| 5 mm |
2917 Gs
291.7 mT
|
23.13 kg / 50.99 lbs
23128.9 g / 226.9 N
|
krytyczny poziom |
| 10 mm |
2049 Gs
204.9 mT
|
11.41 kg / 25.15 lbs
11406.3 g / 111.9 N
|
krytyczny poziom |
| 15 mm |
1396 Gs
139.6 mT
|
5.30 kg / 11.68 lbs
5297.4 g / 52.0 N
|
uwaga |
| 20 mm |
954 Gs
95.4 mT
|
2.47 kg / 5.45 lbs
2473.1 g / 24.3 N
|
uwaga |
| 30 mm |
474 Gs
47.4 mT
|
0.61 kg / 1.35 lbs
610.3 g / 6.0 N
|
niskie ryzyko |
| 50 mm |
155 Gs
15.5 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 38x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| 1 mm | Stal (~0.2) |
7.31 kg / 16.12 lbs
7312.0 g / 71.7 N
|
| 2 mm | Stal (~0.2) |
6.60 kg / 14.55 lbs
6602.0 g / 64.8 N
|
| 3 mm | Stal (~0.2) |
5.91 kg / 13.03 lbs
5910.0 g / 58.0 N
|
| 5 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 10 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 15 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1060.0 g / 10.4 N
|
| 20 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 30 mm | Stal (~0.2) |
0.12 kg / 0.27 lbs
122.0 g / 1.2 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 38x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.02 kg / 26.51 lbs
12024.0 g / 118.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.01 kg / 8.84 lbs
4008.0 g / 39.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.04 kg / 44.18 lbs
20040.0 g / 196.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 38x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.00 kg / 4.42 lbs
2004.0 g / 19.7 N
|
| 1 mm |
|
5.01 kg / 11.05 lbs
5010.0 g / 49.1 N
|
| 2 mm |
|
10.02 kg / 22.09 lbs
10020.0 g / 98.3 N
|
| 3 mm |
|
15.03 kg / 33.14 lbs
15030.0 g / 147.4 N
|
| 5 mm |
|
25.05 kg / 55.23 lbs
25050.0 g / 245.7 N
|
| 10 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 11 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 12 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 38x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
OK |
| 40 °C | -2.2% |
39.20 kg / 86.42 lbs
39198.2 g / 384.5 N
|
OK |
| 60 °C | -4.4% |
38.32 kg / 84.47 lbs
38316.5 g / 375.9 N
|
|
| 80 °C | -6.6% |
37.43 kg / 82.53 lbs
37434.7 g / 367.2 N
|
|
| 100 °C | -28.8% |
28.54 kg / 62.91 lbs
28537.0 g / 279.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 38x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.10 kg / 227.31 lbs
5 235 Gs
|
15.47 kg / 34.10 lbs
15466 g / 151.7 N
|
N/A |
| 1 mm |
98.64 kg / 217.47 lbs
7 512 Gs
|
14.80 kg / 32.62 lbs
14796 g / 145.2 N
|
88.78 kg / 195.72 lbs
~0 Gs
|
| 2 mm |
94.06 kg / 207.36 lbs
7 336 Gs
|
14.11 kg / 31.10 lbs
14109 g / 138.4 N
|
84.65 kg / 186.63 lbs
~0 Gs
|
| 3 mm |
89.48 kg / 197.26 lbs
7 155 Gs
|
13.42 kg / 29.59 lbs
13421 g / 131.7 N
|
80.53 kg / 177.53 lbs
~0 Gs
|
| 5 mm |
80.42 kg / 177.30 lbs
6 783 Gs
|
12.06 kg / 26.60 lbs
12064 g / 118.3 N
|
72.38 kg / 159.57 lbs
~0 Gs
|
| 10 mm |
59.50 kg / 131.17 lbs
5 834 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.05 lbs
~0 Gs
|
| 20 mm |
29.34 kg / 64.69 lbs
4 097 Gs
|
4.40 kg / 9.70 lbs
4401 g / 43.2 N
|
26.41 kg / 58.22 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.80 lbs
1 328 Gs
|
0.46 kg / 1.02 lbs
463 g / 4.5 N
|
2.78 kg / 6.12 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
948 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 70 mm |
0.84 kg / 1.85 lbs
694 Gs
|
0.13 kg / 0.28 lbs
126 g / 1.2 N
|
0.76 kg / 1.67 lbs
~0 Gs
|
| 80 mm |
0.47 kg / 1.04 lbs
520 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 90 mm |
0.28 kg / 0.61 lbs
398 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 100 mm |
0.17 kg / 0.37 lbs
311 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 38x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 38x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
2.13 J | |
| 30 mm |
31.25 km/h
(8.68 m/s)
|
4.81 J | |
| 50 mm |
40.01 km/h
(11.11 m/s)
|
7.88 J | |
| 100 mm |
56.53 km/h
(15.70 m/s)
|
15.73 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 38x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 38x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 45 065 Mx | 450.7 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 38x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.08 kg | Standard |
| Woda (dno rzeki) |
45.89 kg
(+5.81 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Odstęp (między magnesem a blachą), ponieważ nawet niewielka odległość (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Wpływ na smartfony
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Ryzyko złamań
Silne magnesy mogą połamać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Łatwopalność
Pył generowany podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Przegrzanie magnesu
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
