MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN/EAN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń już teraz
+48 22 499 98 98
albo skontaktuj się za pomocą
formularz
przez naszą stronę.
Siłę a także kształt magnesu zobaczysz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN/EAN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe informacje stanowią rezultat analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 3840.0 g
37.7 N
|
mocny |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 2580.1 g
25.3 N
|
mocny |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 1631.0 g
16.0 N
|
bezpieczny |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 998.0 g
9.8 N
|
bezpieczny |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 368.5 g
3.6 N
|
bezpieczny |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 41.7 g
0.4 N
|
bezpieczny |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 7.8 g
0.1 N
|
bezpieczny |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 2.1 g
0.0 N
|
bezpieczny |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 768.0 g
7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 516.0 g
5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 200.0 g
2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 1152.0 g
11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 768.0 g
7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 1920.0 g
18.8 N
|
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 384.0 g
3.8 N
|
| 1 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 2 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 5 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
| 10 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 3840.0 g
37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 3755.5 g
36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 3671.0 g
36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 3586.6 g
35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 2734.1 g
26.8 N
|
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.95 kg / 17946 g
176.1 N
5 957 Gs
|
N/A |
| 1 mm |
14.86 kg / 14865 g
145.8 N
9 821 Gs
|
13.38 kg / 13378 g
131.2 N
~0 Gs
|
| 2 mm |
12.06 kg / 12058 g
118.3 N
8 845 Gs
|
10.85 kg / 10852 g
106.5 N
~0 Gs
|
| 3 mm |
9.64 kg / 9641 g
94.6 N
7 909 Gs
|
8.68 kg / 8677 g
85.1 N
~0 Gs
|
| 5 mm |
5.98 kg / 5978 g
58.6 N
6 228 Gs
|
5.38 kg / 5380 g
52.8 N
~0 Gs
|
| 10 mm |
1.72 kg / 1722 g
16.9 N
3 343 Gs
|
1.55 kg / 1550 g
15.2 N
~0 Gs
|
| 20 mm |
0.20 kg / 195 g
1.9 N
1 125 Gs
|
0.18 kg / 176 g
1.7 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
146 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni kontaktu
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Interferencja medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Poważne obrażenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Rozprysk materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Moc przyciągania
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Sugerujemy noszenie rękawic bezlateksowych.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko połknięcia
Magnesy neodymowe nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
