MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN/EAN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz przez
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig a także formę magnesów neodymowych sprawdzisz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN/EAN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze wartości stanowią wynik symulacji matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
uwaga |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 5.69 lbs
2580.1 g / 25.3 N
|
uwaga |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 3.60 lbs
1631.0 g / 16.0 N
|
słaby uchwyt |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
słaby uchwyt |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
słaby uchwyt |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 0.09 lbs
41.7 g / 0.4 N
|
słaby uchwyt |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 1.14 lbs
516.0 g / 5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 2.54 lbs
1152.0 g / 11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 1 mm |
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 2 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 3 mm |
|
2.88 kg / 6.35 lbs
2880.0 g / 28.3 N
|
| 5 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 10 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 11 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 12 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 8.28 lbs
3755.5 g / 36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 8.09 lbs
3671.0 g / 36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 7.91 lbs
3586.6 g / 35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 6.03 lbs
2734.1 g / 26.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.95 kg / 39.56 lbs
5 957 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
N/A |
| 1 mm |
14.86 kg / 32.77 lbs
9 821 Gs
|
2.23 kg / 4.92 lbs
2230 g / 21.9 N
|
13.38 kg / 29.49 lbs
~0 Gs
|
| 2 mm |
12.06 kg / 26.58 lbs
8 845 Gs
|
1.81 kg / 3.99 lbs
1809 g / 17.7 N
|
10.85 kg / 23.93 lbs
~0 Gs
|
| 3 mm |
9.64 kg / 21.26 lbs
7 909 Gs
|
1.45 kg / 3.19 lbs
1446 g / 14.2 N
|
8.68 kg / 19.13 lbs
~0 Gs
|
| 5 mm |
5.98 kg / 13.18 lbs
6 228 Gs
|
0.90 kg / 1.98 lbs
897 g / 8.8 N
|
5.38 kg / 11.86 lbs
~0 Gs
|
| 10 mm |
1.72 kg / 3.80 lbs
3 343 Gs
|
0.26 kg / 0.57 lbs
258 g / 2.5 N
|
1.55 kg / 3.42 lbs
~0 Gs
|
| 20 mm |
0.20 kg / 0.43 lbs
1 125 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
146 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
92 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) mają nowoczesny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- z użyciem blachy ze stali o wysokiej przenikalności, która służy jako idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Ryzyko uczulenia
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Kruchy spiek
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Smartfony i tablety
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Uwaga: zadławienie
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie fizyczne
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
