MPL 60x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020174
GTIN/EAN: 5906301811800
Długość
60 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.61 kg / 349.34 N
Indukcja magnetyczna
329.64 mT / 3296 Gs
Powłoka
[NiCuNi] nikiel
68.27 ZŁ z VAT / szt. + cena za transport
55.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
formularz
w sekcji kontakt.
Parametry a także kształt magnesu neodymowego zweryfikujesz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 60x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020174 |
| GTIN/EAN | 5906301811800 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.61 kg / 349.34 N |
| Indukcja magnetyczna ~ ? | 329.64 mT / 3296 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze wartości stanowią rezultat kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 60x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3296 Gs
329.6 mT
|
35.61 kg / 35610.0 g
349.3 N
|
miażdżący |
| 1 mm |
3087 Gs
308.7 mT
|
31.25 kg / 31248.2 g
306.5 N
|
miażdżący |
| 2 mm |
2866 Gs
286.6 mT
|
26.93 kg / 26929.3 g
264.2 N
|
miażdżący |
| 3 mm |
2643 Gs
264.3 mT
|
22.90 kg / 22895.5 g
224.6 N
|
miażdżący |
| 5 mm |
2216 Gs
221.6 mT
|
16.10 kg / 16103.3 g
158.0 N
|
miażdżący |
| 10 mm |
1397 Gs
139.7 mT
|
6.40 kg / 6402.3 g
62.8 N
|
średnie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
2.70 kg / 2697.7 g
26.5 N
|
średnie ryzyko |
| 20 mm |
615 Gs
61.5 mT
|
1.24 kg / 1239.2 g
12.2 N
|
niskie ryzyko |
| 30 mm |
314 Gs
31.4 mT
|
0.32 kg / 322.6 g
3.2 N
|
niskie ryzyko |
| 50 mm |
108 Gs
10.8 mT
|
0.04 kg / 38.6 g
0.4 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 60x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.12 kg / 7122.0 g
69.9 N
|
| 1 mm | Stal (~0.2) |
6.25 kg / 6250.0 g
61.3 N
|
| 2 mm | Stal (~0.2) |
5.39 kg / 5386.0 g
52.8 N
|
| 3 mm | Stal (~0.2) |
4.58 kg / 4580.0 g
44.9 N
|
| 5 mm | Stal (~0.2) |
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm | Stal (~0.2) |
1.28 kg / 1280.0 g
12.6 N
|
| 15 mm | Stal (~0.2) |
0.54 kg / 540.0 g
5.3 N
|
| 20 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 30 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 60x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.68 kg / 10683.0 g
104.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.12 kg / 7122.0 g
69.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.56 kg / 3561.0 g
34.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.81 kg / 17805.0 g
174.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 60x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.78 kg / 1780.5 g
17.5 N
|
| 1 mm |
|
4.45 kg / 4451.3 g
43.7 N
|
| 2 mm |
|
8.90 kg / 8902.5 g
87.3 N
|
| 5 mm |
|
22.26 kg / 22256.3 g
218.3 N
|
| 10 mm |
|
35.61 kg / 35610.0 g
349.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 60x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.61 kg / 35610.0 g
349.3 N
|
OK |
| 40 °C | -2.2% |
34.83 kg / 34826.6 g
341.6 N
|
OK |
| 60 °C | -4.4% |
34.04 kg / 34043.2 g
334.0 N
|
|
| 80 °C | -6.6% |
33.26 kg / 33259.7 g
326.3 N
|
|
| 100 °C | -28.8% |
25.35 kg / 25354.3 g
248.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 60x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
80.35 kg / 80353 g
788.3 N
4 692 Gs
|
N/A |
| 1 mm |
75.49 kg / 75491 g
740.6 N
6 389 Gs
|
67.94 kg / 67942 g
666.5 N
~0 Gs
|
| 2 mm |
70.51 kg / 70511 g
691.7 N
6 174 Gs
|
63.46 kg / 63460 g
622.5 N
~0 Gs
|
| 3 mm |
65.58 kg / 65582 g
643.4 N
5 955 Gs
|
59.02 kg / 59023 g
579.0 N
~0 Gs
|
| 5 mm |
56.11 kg / 56113 g
550.5 N
5 508 Gs
|
50.50 kg / 50501 g
495.4 N
~0 Gs
|
| 10 mm |
36.34 kg / 36337 g
356.5 N
4 432 Gs
|
32.70 kg / 32703 g
320.8 N
~0 Gs
|
| 20 mm |
14.45 kg / 14447 g
141.7 N
2 795 Gs
|
13.00 kg / 13002 g
127.5 N
~0 Gs
|
| 50 mm |
1.38 kg / 1384 g
13.6 N
865 Gs
|
1.25 kg / 1246 g
12.2 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 60x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 60x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.20 km/h
(6.17 m/s)
|
1.71 J | |
| 30 mm |
34.94 km/h
(9.71 m/s)
|
4.24 J | |
| 50 mm |
44.89 km/h
(12.47 m/s)
|
7.00 J | |
| 100 mm |
63.44 km/h
(17.62 m/s)
|
13.97 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 60x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 60x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 37 480 Mx | 374.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 60x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.61 kg | Standard |
| Woda (dno rzeki) |
40.77 kg
(+5.16 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- z użyciem płyty ze miękkiej stali, która służy jako zwora magnetyczna
- o grubości przynajmniej 10 mm
- z powierzchnią wolną od rys
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Zagrożenie dla elektroniki
Nie przykładaj magnesów do portfela, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Ryzyko uczulenia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Urazy ciała
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Ryzyko pożaru
Pył generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ogromna siła
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
