MPL 60x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020174
GTIN/EAN: 5906301811800
Długość
60 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.61 kg / 349.34 N
Indukcja magnetyczna
329.64 mT / 3296 Gs
Powłoka
[NiCuNi] nikiel
68.27 ZŁ z VAT / szt. + cena za transport
55.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz korzystając z
formularz kontaktowy
w sekcji kontakt.
Siłę i wygląd magnesu zweryfikujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MPL 60x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020174 |
| GTIN/EAN | 5906301811800 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.61 kg / 349.34 N |
| Indukcja magnetyczna ~ ? | 329.64 mT / 3296 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje są bezpośredni efekt kalkulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 60x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3296 Gs
329.6 mT
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
miażdżący |
| 1 mm |
3087 Gs
308.7 mT
|
31.25 kg / 68.89 lbs
31248.2 g / 306.5 N
|
miażdżący |
| 2 mm |
2866 Gs
286.6 mT
|
26.93 kg / 59.37 lbs
26929.3 g / 264.2 N
|
miażdżący |
| 3 mm |
2643 Gs
264.3 mT
|
22.90 kg / 50.48 lbs
22895.5 g / 224.6 N
|
miażdżący |
| 5 mm |
2216 Gs
221.6 mT
|
16.10 kg / 35.50 lbs
16103.3 g / 158.0 N
|
miażdżący |
| 10 mm |
1397 Gs
139.7 mT
|
6.40 kg / 14.11 lbs
6402.3 g / 62.8 N
|
mocny |
| 15 mm |
907 Gs
90.7 mT
|
2.70 kg / 5.95 lbs
2697.7 g / 26.5 N
|
mocny |
| 20 mm |
615 Gs
61.5 mT
|
1.24 kg / 2.73 lbs
1239.2 g / 12.2 N
|
niskie ryzyko |
| 30 mm |
314 Gs
31.4 mT
|
0.32 kg / 0.71 lbs
322.6 g / 3.2 N
|
niskie ryzyko |
| 50 mm |
108 Gs
10.8 mT
|
0.04 kg / 0.09 lbs
38.6 g / 0.4 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 60x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
|
| 1 mm | Stal (~0.2) |
6.25 kg / 13.78 lbs
6250.0 g / 61.3 N
|
| 2 mm | Stal (~0.2) |
5.39 kg / 11.87 lbs
5386.0 g / 52.8 N
|
| 3 mm | Stal (~0.2) |
4.58 kg / 10.10 lbs
4580.0 g / 44.9 N
|
| 5 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 10 mm | Stal (~0.2) |
1.28 kg / 2.82 lbs
1280.0 g / 12.6 N
|
| 15 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 20 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 30 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 60x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.68 kg / 23.55 lbs
10683.0 g / 104.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.56 kg / 7.85 lbs
3561.0 g / 34.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.81 kg / 39.25 lbs
17805.0 g / 174.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 60x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.78 kg / 3.93 lbs
1780.5 g / 17.5 N
|
| 1 mm |
|
4.45 kg / 9.81 lbs
4451.3 g / 43.7 N
|
| 2 mm |
|
8.90 kg / 19.63 lbs
8902.5 g / 87.3 N
|
| 3 mm |
|
13.35 kg / 29.44 lbs
13353.8 g / 131.0 N
|
| 5 mm |
|
22.26 kg / 49.07 lbs
22256.3 g / 218.3 N
|
| 10 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
| 11 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
| 12 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 60x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
OK |
| 40 °C | -2.2% |
34.83 kg / 76.78 lbs
34826.6 g / 341.6 N
|
OK |
| 60 °C | -4.4% |
34.04 kg / 75.05 lbs
34043.2 g / 334.0 N
|
|
| 80 °C | -6.6% |
33.26 kg / 73.33 lbs
33259.7 g / 326.3 N
|
|
| 100 °C | -28.8% |
25.35 kg / 55.90 lbs
25354.3 g / 248.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 60x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
80.35 kg / 177.15 lbs
4 692 Gs
|
12.05 kg / 26.57 lbs
12053 g / 118.2 N
|
N/A |
| 1 mm |
75.49 kg / 166.43 lbs
6 389 Gs
|
11.32 kg / 24.96 lbs
11324 g / 111.1 N
|
67.94 kg / 149.79 lbs
~0 Gs
|
| 2 mm |
70.51 kg / 155.45 lbs
6 174 Gs
|
10.58 kg / 23.32 lbs
10577 g / 103.8 N
|
63.46 kg / 139.90 lbs
~0 Gs
|
| 3 mm |
65.58 kg / 144.58 lbs
5 955 Gs
|
9.84 kg / 21.69 lbs
9837 g / 96.5 N
|
59.02 kg / 130.12 lbs
~0 Gs
|
| 5 mm |
56.11 kg / 123.71 lbs
5 508 Gs
|
8.42 kg / 18.56 lbs
8417 g / 82.6 N
|
50.50 kg / 111.34 lbs
~0 Gs
|
| 10 mm |
36.34 kg / 80.11 lbs
4 432 Gs
|
5.45 kg / 12.02 lbs
5450 g / 53.5 N
|
32.70 kg / 72.10 lbs
~0 Gs
|
| 20 mm |
14.45 kg / 31.85 lbs
2 795 Gs
|
2.17 kg / 4.78 lbs
2167 g / 21.3 N
|
13.00 kg / 28.66 lbs
~0 Gs
|
| 50 mm |
1.38 kg / 3.05 lbs
865 Gs
|
0.21 kg / 0.46 lbs
208 g / 2.0 N
|
1.25 kg / 2.75 lbs
~0 Gs
|
| 60 mm |
0.73 kg / 1.60 lbs
627 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.44 lbs
~0 Gs
|
| 70 mm |
0.40 kg / 0.89 lbs
467 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 lbs
355 Gs
|
0.03 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.46 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
275 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
217 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 60x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 60x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.20 km/h
(6.17 m/s)
|
1.71 J | |
| 30 mm |
34.94 km/h
(9.71 m/s)
|
4.24 J | |
| 50 mm |
44.89 km/h
(12.47 m/s)
|
7.00 J | |
| 100 mm |
63.44 km/h
(17.62 m/s)
|
13.97 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 60x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 60x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 37 480 Mx | 374.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 60x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.61 kg | Standard |
| Woda (dno rzeki) |
40.77 kg
(+5.16 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z wykorzystaniem blachy ze miękkiej stali, pełniącej rolę zwora magnetyczna
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ostrożność wymagana
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Uczulenie na powłokę
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko połknięcia
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
