MW 8x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010102
GTIN/EAN: 5906301811015
Średnica Ø
8 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
5.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.47 kg / 14.45 N
Indukcja magnetyczna
598.12 mT / 5981 Gs
Powłoka
[NiCuNi] nikiel
3.44 ZŁ z VAT / szt. + cena za transport
2.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Właściwości i formę elementów magnetycznych wyliczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 8x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010102 |
| GTIN/EAN | 5906301811015 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 5.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.47 kg / 14.45 N |
| Indukcja magnetyczna ~ ? | 598.12 mT / 5981 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze dane stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 8x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5975 Gs
597.5 mT
|
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
niskie ryzyko |
| 1 mm |
4511 Gs
451.1 mT
|
0.84 kg / 1.85 lbs
837.8 g / 8.2 N
|
niskie ryzyko |
| 2 mm |
3262 Gs
326.2 mT
|
0.44 kg / 0.97 lbs
438.2 g / 4.3 N
|
niskie ryzyko |
| 3 mm |
2332 Gs
233.2 mT
|
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
niskie ryzyko |
| 5 mm |
1238 Gs
123.8 mT
|
0.06 kg / 0.14 lbs
63.1 g / 0.6 N
|
niskie ryzyko |
| 10 mm |
366 Gs
36.6 mT
|
0.01 kg / 0.01 lbs
5.5 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
155 Gs
15.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 8x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.29 kg / 0.65 lbs
294.0 g / 2.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
88.0 g / 0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 8x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 0.97 lbs
441.0 g / 4.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.29 kg / 0.65 lbs
294.0 g / 2.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.32 lbs
147.0 g / 1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 1.62 lbs
735.0 g / 7.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 8x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.32 lbs
147.0 g / 1.4 N
|
| 1 mm |
|
0.37 kg / 0.81 lbs
367.5 g / 3.6 N
|
| 2 mm |
|
0.74 kg / 1.62 lbs
735.0 g / 7.2 N
|
| 3 mm |
|
1.10 kg / 2.43 lbs
1102.5 g / 10.8 N
|
| 5 mm |
|
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
| 10 mm |
|
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
| 11 mm |
|
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
| 12 mm |
|
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 8x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.47 kg / 3.24 lbs
1470.0 g / 14.4 N
|
OK |
| 40 °C | -2.2% |
1.44 kg / 3.17 lbs
1437.7 g / 14.1 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 3.10 lbs
1405.3 g / 13.8 N
|
OK |
| 80 °C | -6.6% |
1.37 kg / 3.03 lbs
1373.0 g / 13.5 N
|
|
| 100 °C | -28.8% |
1.05 kg / 2.31 lbs
1046.6 g / 10.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 8x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.06 kg / 24.39 lbs
6 130 Gs
|
1.66 kg / 3.66 lbs
1660 g / 16.3 N
|
N/A |
| 1 mm |
8.49 kg / 18.72 lbs
10 469 Gs
|
1.27 kg / 2.81 lbs
1274 g / 12.5 N
|
7.64 kg / 16.85 lbs
~0 Gs
|
| 2 mm |
6.31 kg / 13.90 lbs
9 022 Gs
|
0.95 kg / 2.09 lbs
946 g / 9.3 N
|
5.68 kg / 12.51 lbs
~0 Gs
|
| 3 mm |
4.59 kg / 10.12 lbs
7 697 Gs
|
0.69 kg / 1.52 lbs
688 g / 6.8 N
|
4.13 kg / 9.11 lbs
~0 Gs
|
| 5 mm |
2.36 kg / 5.20 lbs
5 516 Gs
|
0.35 kg / 0.78 lbs
354 g / 3.5 N
|
2.12 kg / 4.68 lbs
~0 Gs
|
| 10 mm |
0.48 kg / 1.05 lbs
2 476 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.43 kg / 0.94 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 lbs
731 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
94 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 8x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 8x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.31 km/h
(4.53 m/s)
|
0.06 J | |
| 30 mm |
28.18 km/h
(7.83 m/s)
|
0.17 J | |
| 50 mm |
36.37 km/h
(10.10 m/s)
|
0.29 J | |
| 100 mm |
51.44 km/h
(14.29 m/s)
|
0.58 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 8x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 8x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 306 Mx | 33.1 µWb |
| Współczynnik Pc | 1.19 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 8x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.47 kg | Standard |
| Woda (dno rzeki) |
1.68 kg
(+0.21 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.19
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- o przekroju przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Produkt nie dla dzieci
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Uwaga medyczna
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Karty i dyski
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Zagrożenie zapłonem
Pył generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Potężne pole
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Nadwrażliwość na metale
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
