MPL 5x5x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020173
GTIN/EAN: 5906301811794
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.77 kg / 7.57 N
Indukcja magnetyczna
360.52 mT / 3605 Gs
Powłoka
[NiCuNi] nikiel
0.308 ZŁ z VAT / szt. + cena za transport
0.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo pisz korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig i wygląd elementów magnetycznych zweryfikujesz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020173 |
| GTIN/EAN | 5906301811794 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.77 kg / 7.57 N |
| Indukcja magnetyczna ~ ? | 360.52 mT / 3605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Przedstawione dane stanowią wynik kalkulacji fizycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 5x5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3601 Gs
360.1 mT
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
słaby uchwyt |
| 1 mm |
2436 Gs
243.6 mT
|
0.35 kg / 0.78 lbs
352.2 g / 3.5 N
|
słaby uchwyt |
| 2 mm |
1464 Gs
146.4 mT
|
0.13 kg / 0.28 lbs
127.3 g / 1.2 N
|
słaby uchwyt |
| 3 mm |
872 Gs
87.2 mT
|
0.05 kg / 0.10 lbs
45.1 g / 0.4 N
|
słaby uchwyt |
| 5 mm |
347 Gs
34.7 mT
|
0.01 kg / 0.02 lbs
7.2 g / 0.1 N
|
słaby uchwyt |
| 10 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 5x5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 5x5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 5x5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| 1 mm |
|
0.19 kg / 0.42 lbs
192.5 g / 1.9 N
|
| 2 mm |
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
| 3 mm |
|
0.58 kg / 1.27 lbs
577.5 g / 5.7 N
|
| 5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 10 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 11 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 12 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 5x5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 1.66 lbs
753.1 g / 7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 1.62 lbs
736.1 g / 7.2 N
|
|
| 80 °C | -6.6% |
0.72 kg / 1.59 lbs
719.2 g / 7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 1.21 lbs
548.2 g / 5.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 5x5x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.00 kg / 4.41 lbs
5 058 Gs
|
0.30 kg / 0.66 lbs
300 g / 2.9 N
|
N/A |
| 1 mm |
1.42 kg / 3.13 lbs
6 070 Gs
|
0.21 kg / 0.47 lbs
213 g / 2.1 N
|
1.28 kg / 2.82 lbs
~0 Gs
|
| 2 mm |
0.91 kg / 2.02 lbs
4 871 Gs
|
0.14 kg / 0.30 lbs
137 g / 1.3 N
|
0.82 kg / 1.81 lbs
~0 Gs
|
| 3 mm |
0.56 kg / 1.23 lbs
3 801 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.10 lbs
~0 Gs
|
| 5 mm |
0.20 kg / 0.43 lbs
2 254 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
695 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
136 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 5x5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 5x5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.41 km/h
(12.61 m/s)
|
0.03 J | |
| 30 mm |
78.63 km/h
(21.84 m/s)
|
0.09 J | |
| 50 mm |
101.51 km/h
(28.20 m/s)
|
0.15 J | |
| 100 mm |
143.56 km/h
(39.88 m/s)
|
0.30 J |
Tabela 9: Odporność na korozję
MPL 5x5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 5x5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 940 Mx | 9.4 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 5x5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.77 kg | Standard |
| Woda (dno rzeki) |
0.88 kg
(+0.11 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, działającej jako element zamykający obwód
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- przy bezpośrednim styku (brak farby)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Ostrzeżenie dla sercowców
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Zasady obsługi
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Uczulenie na powłokę
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ochrona oczu
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
