MPL 40x18x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020156
GTIN/EAN: 5906301811626
Długość
40 mm [±0,1 mm]
Szerokość
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.81 kg / 233.58 N
Indukcja magnetyczna
366.66 mT / 3667 Gs
Powłoka
[NiCuNi] nikiel
30.75 ZŁ z VAT / szt. + cena za transport
25.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz poprzez
formularz kontaktowy
na stronie kontaktowej.
Udźwig a także formę magnesu neodymowego sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020156 |
| GTIN/EAN | 5906301811626 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.81 kg / 233.58 N |
| Indukcja magnetyczna ~ ? | 366.66 mT / 3667 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione informacje stanowią wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 40x18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
krytyczny poziom |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
|
krytyczny poziom |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
|
krytyczny poziom |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
|
krytyczny poziom |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
|
średnie ryzyko |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
|
średnie ryzyko |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
|
niskie ryzyko |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
|
niskie ryzyko |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 40x18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 40x18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
|
| 1 mm |
|
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
|
| 2 mm |
|
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
|
| 3 mm |
|
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
|
| 5 mm |
|
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
|
| 10 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 11 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 12 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 40x18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 37.37 lbs
16952.7 g / 166.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.64 kg / 131.49 lbs
5 034 Gs
|
8.95 kg / 19.72 lbs
8947 g / 87.8 N
|
N/A |
| 1 mm |
55.50 kg / 122.35 lbs
7 072 Gs
|
8.32 kg / 18.35 lbs
8325 g / 81.7 N
|
49.95 kg / 110.12 lbs
~0 Gs
|
| 2 mm |
51.29 kg / 113.08 lbs
6 799 Gs
|
7.69 kg / 16.96 lbs
7694 g / 75.5 N
|
46.16 kg / 101.77 lbs
~0 Gs
|
| 3 mm |
47.18 kg / 104.01 lbs
6 520 Gs
|
7.08 kg / 15.60 lbs
7076 g / 69.4 N
|
42.46 kg / 93.61 lbs
~0 Gs
|
| 5 mm |
39.41 kg / 86.88 lbs
5 959 Gs
|
5.91 kg / 13.03 lbs
5912 g / 58.0 N
|
35.47 kg / 78.20 lbs
~0 Gs
|
| 10 mm |
23.92 kg / 52.73 lbs
4 643 Gs
|
3.59 kg / 7.91 lbs
3588 g / 35.2 N
|
21.53 kg / 47.46 lbs
~0 Gs
|
| 20 mm |
8.33 kg / 18.36 lbs
2 739 Gs
|
1.25 kg / 2.75 lbs
1249 g / 12.3 N
|
7.49 kg / 16.52 lbs
~0 Gs
|
| 50 mm |
0.55 kg / 1.22 lbs
705 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.09 lbs
~0 Gs
|
| 60 mm |
0.26 kg / 0.58 lbs
487 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.52 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 lbs
348 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 lbs
256 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
194 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
149 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 40x18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 40x18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 40x18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 26 060 Mx | 260.6 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.81 kg | Standard |
| Woda (dno rzeki) |
27.26 kg
(+3.45 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Wpływ na smartfony
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Uczulenie na powłokę
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
