Neodymy – szeroki wybór kształtów

Szukasz ogromnej mocy w małym rozmiarze? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

poznaj pełną ofertę

Uchwyty do eksploracji dna

Odkryj pasję związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

wybierz sprzęt do poszukiwań

Magnetyczne rozwiązania dla firm

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (M8, M10, M12) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, czujników oraz reklam.

zobacz dostępne gwinty

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 40x18x10 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020156

GTIN/EAN: 5906301811626

5.00

Długość

40 mm [±0,1 mm]

Szerokość

18 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

54 g

Kierunek magnesowania

↑ osiowy

Udźwig

23.81 kg / 233.58 N

Indukcja magnetyczna

366.66 mT / 3667 Gs

Powłoka

[NiCuNi] nikiel

30.75 z VAT / szt. + cena za transport

25.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
25.00 ZŁ
30.75 ZŁ
cena od 30 szt.
23.50 ZŁ
28.91 ZŁ
cena od 100 szt.
22.00 ZŁ
27.06 ZŁ
Potrzebujesz porady?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 ewentualnie pisz poprzez formularz kontaktowy na stronie kontaktowej.
Udźwig a także formę magnesu neodymowego sprawdzisz w naszym kalkulatorze masy magnetycznej.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Specyfikacja - MPL 40x18x10 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 40x18x10 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020156
GTIN/EAN 5906301811626
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 40 mm [±0,1 mm]
Szerokość 18 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 54 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 23.81 kg / 233.58 N
Indukcja magnetyczna ~ ? 366.66 mT / 3667 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 40x18x10 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - raport

Przedstawione informacje stanowią wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 40x18x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3666 Gs
366.6 mT
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
krytyczny poziom
1 mm 3399 Gs
339.9 mT
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
krytyczny poziom
2 mm 3120 Gs
312.0 mT
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
krytyczny poziom
3 mm 2841 Gs
284.1 mT
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
krytyczny poziom
5 mm 2321 Gs
232.1 mT
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
średnie ryzyko
10 mm 1370 Gs
137.0 mT
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
średnie ryzyko
15 mm 833 Gs
83.3 mT
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
niskie ryzyko
20 mm 530 Gs
53.0 mT
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
niskie ryzyko
30 mm 244 Gs
24.4 mT
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
niskie ryzyko
50 mm 75 Gs
7.5 mT
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (pion)
MPL 40x18x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
1 mm Stal (~0.2) 4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
2 mm Stal (~0.2) 3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
3 mm Stal (~0.2) 2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
5 mm Stal (~0.2) 1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
10 mm Stal (~0.2) 0.66 kg / 1.46 lbs
664.0 g / 6.5 N
15 mm Stal (~0.2) 0.25 kg / 0.54 lbs
246.0 g / 2.4 N
20 mm Stal (~0.2) 0.10 kg / 0.22 lbs
100.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.05 lbs
22.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x18x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 40x18x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
1 mm
13%
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
2 mm
25%
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
3 mm
38%
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
5 mm
63%
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
10 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
11 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
12 mm
100%
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N

Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 40x18x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
OK
40 °C -2.2% 23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
OK
60 °C -4.4% 22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
80 °C -6.6% 22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
100 °C -28.8% 16.95 kg / 37.37 lbs
16952.7 g / 166.3 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x18x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 59.64 kg / 131.49 lbs
5 034 Gs
8.95 kg / 19.72 lbs
8947 g / 87.8 N
N/A
1 mm 55.50 kg / 122.35 lbs
7 072 Gs
8.32 kg / 18.35 lbs
8325 g / 81.7 N
49.95 kg / 110.12 lbs
~0 Gs
2 mm 51.29 kg / 113.08 lbs
6 799 Gs
7.69 kg / 16.96 lbs
7694 g / 75.5 N
46.16 kg / 101.77 lbs
~0 Gs
3 mm 47.18 kg / 104.01 lbs
6 520 Gs
7.08 kg / 15.60 lbs
7076 g / 69.4 N
42.46 kg / 93.61 lbs
~0 Gs
5 mm 39.41 kg / 86.88 lbs
5 959 Gs
5.91 kg / 13.03 lbs
5912 g / 58.0 N
35.47 kg / 78.20 lbs
~0 Gs
10 mm 23.92 kg / 52.73 lbs
4 643 Gs
3.59 kg / 7.91 lbs
3588 g / 35.2 N
21.53 kg / 47.46 lbs
~0 Gs
20 mm 8.33 kg / 18.36 lbs
2 739 Gs
1.25 kg / 2.75 lbs
1249 g / 12.3 N
7.49 kg / 16.52 lbs
~0 Gs
50 mm 0.55 kg / 1.22 lbs
705 Gs
0.08 kg / 0.18 lbs
83 g / 0.8 N
0.50 kg / 1.09 lbs
~0 Gs
60 mm 0.26 kg / 0.58 lbs
487 Gs
0.04 kg / 0.09 lbs
40 g / 0.4 N
0.24 kg / 0.52 lbs
~0 Gs
70 mm 0.13 kg / 0.30 lbs
348 Gs
0.02 kg / 0.04 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
80 mm 0.07 kg / 0.16 lbs
256 Gs
0.01 kg / 0.02 lbs
11 g / 0.1 N
0.07 kg / 0.14 lbs
~0 Gs
90 mm 0.04 kg / 0.09 lbs
194 Gs
0.01 kg / 0.01 lbs
6 g / 0.1 N
0.04 kg / 0.08 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
149 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 40x18x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 14.0 cm
Implant słuchowy 10 Gs (1.0 mT) 11.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 8.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 6.5 cm
Pilot do auta 50 Gs (5.0 mT) 6.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 40x18x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.95 km/h
(6.38 m/s)
1.10 J
30 mm 36.78 km/h
(10.22 m/s)
2.82 J
50 mm 47.37 km/h
(13.16 m/s)
4.67 J
100 mm 66.97 km/h
(18.60 m/s)
9.34 J

Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x18x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MPL 40x18x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 26 060 Mx 260.6 µWb
Współczynnik Pc 0.43 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x18x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 23.81 kg Standard
Woda (dno rzeki) 27.26 kg
(+3.45 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% nominalnego udźwigu.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020156-2026
Przelicznik magnesów
Siła oderwania

Indukcja magnetyczna

Inne propozycje

Model MPL 40x18x10 / N38 cechuje się płaskim kształtem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Ten blok magnetyczny o sile 233.58 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 40x18x10 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Stanowią kluczowy element w produkcji generatorów oraz systemów transportu bliskiego. Dzięki płaskiej powierzchni i dużej sile (ok. 23.81 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 40x18x10 / N38 polecamy stosować mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (40x18 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 40x18x10 mm, co przy wadze 54 g czyni go elementem o wysokiej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 23.81 kg (siła ~233.58 N), co przy tak kompaktowym kształcie świadczy o dużej mocy materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Mocne strony

Neodymy to nie tylko moc przyciągania, ale także inne kluczowe cechy, w tym::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
  • Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
  • Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
  • Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Ograniczenia

Mimo zalet, posiadają też wady:
  • Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.

Charakterystyka udźwigu

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?

Parametr siły jest wartością teoretyczną maksymalną zrealizowanego w następującej konfiguracji:
  • z zastosowaniem blachy ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
  • posiadającej grubość min. 10 mm aby uniknąć nasycenia
  • o wypolerowanej powierzchni styku
  • bez żadnej szczeliny pomiędzy magnesem a stalą
  • przy pionowym kierunku działania siły (kąt 90 stopni)
  • w temp. ok. 20°C

Udźwig magnesu w użyciu – kluczowe czynniki

W praktyce, realna moc zależy od wielu zmiennych, które przedstawiamy od najważniejszych:
  • Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
  • Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
  • Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
  • Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża nośność.

Środki ostrożności podczas pracy przy magnesach z neodymem
Pył jest łatwopalny

Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.

Zagrożenie dla elektroniki

Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).

Ochrona oczu

Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.

Ostrzeżenie dla sercowców

Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.

Nie przegrzewaj magnesów

Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.

Poważne obrażenia

Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

To nie jest zabawka

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.

Wpływ na smartfony

Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.

Zasady obsługi

Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Uczulenie na powłokę

Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.

Zagrożenie! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98