MPL 40x18x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020156
GTIN/EAN: 5906301811626
Długość
40 mm [±0,1 mm]
Szerokość
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.81 kg / 233.58 N
Indukcja magnetyczna
366.66 mT / 3667 Gs
Powłoka
[NiCuNi] nikiel
30.75 ZŁ z VAT / szt. + cena za transport
25.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie daj znać poprzez
nasz formularz online
na stronie kontakt.
Parametry oraz kształt magnesu neodymowego zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020156 |
| GTIN/EAN | 5906301811626 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.81 kg / 233.58 N |
| Indukcja magnetyczna ~ ? | 366.66 mT / 3667 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Przedstawione informacje są bezpośredni efekt kalkulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 40x18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
miażdżący |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
|
miażdżący |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
|
miażdżący |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
|
miażdżący |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
|
uwaga |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
|
uwaga |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
|
bezpieczny |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
|
bezpieczny |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
bezpieczny |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 40x18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 40x18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 40x18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
|
| 1 mm |
|
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
|
| 2 mm |
|
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
|
| 3 mm |
|
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
|
| 5 mm |
|
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
|
| 10 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 11 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 12 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 37.37 lbs
16952.7 g / 166.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 40x18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.64 kg / 131.49 lbs
5 034 Gs
|
8.95 kg / 19.72 lbs
8947 g / 87.8 N
|
N/A |
| 1 mm |
55.50 kg / 122.35 lbs
7 072 Gs
|
8.32 kg / 18.35 lbs
8325 g / 81.7 N
|
49.95 kg / 110.12 lbs
~0 Gs
|
| 2 mm |
51.29 kg / 113.08 lbs
6 799 Gs
|
7.69 kg / 16.96 lbs
7694 g / 75.5 N
|
46.16 kg / 101.77 lbs
~0 Gs
|
| 3 mm |
47.18 kg / 104.01 lbs
6 520 Gs
|
7.08 kg / 15.60 lbs
7076 g / 69.4 N
|
42.46 kg / 93.61 lbs
~0 Gs
|
| 5 mm |
39.41 kg / 86.88 lbs
5 959 Gs
|
5.91 kg / 13.03 lbs
5912 g / 58.0 N
|
35.47 kg / 78.20 lbs
~0 Gs
|
| 10 mm |
23.92 kg / 52.73 lbs
4 643 Gs
|
3.59 kg / 7.91 lbs
3588 g / 35.2 N
|
21.53 kg / 47.46 lbs
~0 Gs
|
| 20 mm |
8.33 kg / 18.36 lbs
2 739 Gs
|
1.25 kg / 2.75 lbs
1249 g / 12.3 N
|
7.49 kg / 16.52 lbs
~0 Gs
|
| 50 mm |
0.55 kg / 1.22 lbs
705 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.09 lbs
~0 Gs
|
| 60 mm |
0.26 kg / 0.58 lbs
487 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.52 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 lbs
348 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 lbs
256 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
194 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
149 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 40x18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 26 060 Mx | 260.6 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.81 kg | Standard |
| Woda (dno rzeki) |
27.26 kg
(+3.45 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- której grubość to min. 10 mm
- o szlifowanej powierzchni kontaktu
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Nie zbliżaj do komputera
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Rozruszniki serca
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Zagrożenie wybuchem pyłu
Pył powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Smartfony i tablety
Pamiętaj: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Chronić przed dziećmi
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
