MW 33x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010058
GTIN/EAN: 5906301810575
Średnica Ø
33 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
192.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.84 kg / 351.54 N
Indukcja magnetyczna
543.05 mT / 5430 Gs
Powłoka
[NiCuNi] nikiel
52.89 ZŁ z VAT / szt. + cena za transport
43.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
formularz zapytania
w sekcji kontakt.
Udźwig oraz kształt magnesu wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MW 33x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010058 |
| GTIN/EAN | 5906301810575 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 192.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.84 kg / 351.54 N |
| Indukcja magnetyczna ~ ? | 543.05 mT / 5430 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Poniższe wartości są bezpośredni efekt kalkulacji matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 33x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
niebezpieczny! |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 69.67 lbs
31600.1 g / 310.0 N
|
niebezpieczny! |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 60.85 lbs
27601.7 g / 270.8 N
|
niebezpieczny! |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 52.76 lbs
23930.4 g / 234.8 N
|
niebezpieczny! |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 38.91 lbs
17650.2 g / 173.1 N
|
niebezpieczny! |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 17.00 lbs
7709.5 g / 75.6 N
|
średnie ryzyko |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 7.30 lbs
3312.1 g / 32.5 N
|
średnie ryzyko |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 3.27 lbs
1485.1 g / 14.6 N
|
słaby uchwyt |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 0.80 lbs
361.9 g / 3.5 N
|
słaby uchwyt |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 33x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 13.93 lbs
6320.0 g / 62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 12.17 lbs
5520.0 g / 54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 10.55 lbs
4786.0 g / 47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 7.78 lbs
3530.0 g / 34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1542.0 g / 15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
662.0 g / 6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 33x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 23.70 lbs
10752.0 g / 105.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 39.51 lbs
17920.0 g / 175.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 33x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 1 mm |
|
4.48 kg / 9.88 lbs
4480.0 g / 43.9 N
|
| 2 mm |
|
8.96 kg / 19.75 lbs
8960.0 g / 87.9 N
|
| 3 mm |
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
| 5 mm |
|
22.40 kg / 49.38 lbs
22400.0 g / 219.7 N
|
| 10 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 11 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 12 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 33x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 77.28 lbs
35051.5 g / 343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 75.54 lbs
34263.0 g / 336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 73.80 lbs
33474.6 g / 328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 56.26 lbs
25518.1 g / 250.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 33x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
155.43 kg / 342.66 lbs
5 974 Gs
|
23.31 kg / 51.40 lbs
23314 g / 228.7 N
|
N/A |
| 1 mm |
146.19 kg / 322.29 lbs
10 531 Gs
|
21.93 kg / 48.34 lbs
21928 g / 215.1 N
|
131.57 kg / 290.06 lbs
~0 Gs
|
| 2 mm |
137.04 kg / 302.12 lbs
10 196 Gs
|
20.56 kg / 45.32 lbs
20556 g / 201.7 N
|
123.34 kg / 271.91 lbs
~0 Gs
|
| 3 mm |
128.20 kg / 282.64 lbs
9 862 Gs
|
19.23 kg / 42.40 lbs
19230 g / 188.6 N
|
115.38 kg / 254.37 lbs
~0 Gs
|
| 5 mm |
111.55 kg / 245.93 lbs
9 199 Gs
|
16.73 kg / 36.89 lbs
16733 g / 164.2 N
|
100.40 kg / 221.34 lbs
~0 Gs
|
| 10 mm |
76.54 kg / 168.75 lbs
7 620 Gs
|
11.48 kg / 25.31 lbs
11481 g / 112.6 N
|
68.89 kg / 151.87 lbs
~0 Gs
|
| 20 mm |
33.43 kg / 73.71 lbs
5 036 Gs
|
5.02 kg / 11.06 lbs
5015 g / 49.2 N
|
30.09 kg / 66.34 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.78 lbs
1 528 Gs
|
0.46 kg / 1.02 lbs
462 g / 4.5 N
|
2.77 kg / 6.11 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
1 091 Gs
|
0.24 kg / 0.52 lbs
235 g / 2.3 N
|
1.41 kg / 3.11 lbs
~0 Gs
|
| 70 mm |
0.85 kg / 1.87 lbs
803 Gs
|
0.13 kg / 0.28 lbs
127 g / 1.2 N
|
0.76 kg / 1.69 lbs
~0 Gs
|
| 80 mm |
0.48 kg / 1.07 lbs
606 Gs
|
0.07 kg / 0.16 lbs
73 g / 0.7 N
|
0.44 kg / 0.96 lbs
~0 Gs
|
| 90 mm |
0.29 kg / 0.64 lbs
468 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 100 mm |
0.18 kg / 0.40 lbs
369 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 33x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 33x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 33x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 33x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 47 447 Mx | 474.5 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 33x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.84 kg | Standard |
| Woda (dno rzeki) |
41.04 kg
(+5.20 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zagrożenie dla elektroniki
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Kompas i GPS
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zakaz zabawy
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Kruchość materiału
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Uczulenie na powłokę
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
