MPL 40x15x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020155
GTIN/EAN: 5906301811619
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
27 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.21 kg / 139.45 N
Indukcja magnetyczna
286.36 mT / 2864 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie daj znać poprzez
formularz zapytania
na stronie kontakt.
Parametry oraz formę elementów magnetycznych sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne - MPL 40x15x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020155 |
| GTIN/EAN | 5906301811619 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 27 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.21 kg / 139.45 N |
| Indukcja magnetyczna ~ ? | 286.36 mT / 2864 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią wynik symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 40x15x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2863 Gs
286.3 mT
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
krytyczny poziom |
| 1 mm |
2635 Gs
263.5 mT
|
12.04 kg / 26.55 lbs
12041.8 g / 118.1 N
|
krytyczny poziom |
| 2 mm |
2385 Gs
238.5 mT
|
9.86 kg / 21.74 lbs
9859.1 g / 96.7 N
|
mocny |
| 3 mm |
2132 Gs
213.2 mT
|
7.88 kg / 17.37 lbs
7880.1 g / 77.3 N
|
mocny |
| 5 mm |
1670 Gs
167.0 mT
|
4.84 kg / 10.66 lbs
4837.1 g / 47.5 N
|
mocny |
| 10 mm |
903 Gs
90.3 mT
|
1.41 kg / 3.11 lbs
1412.2 g / 13.9 N
|
słaby uchwyt |
| 15 mm |
520 Gs
52.0 mT
|
0.47 kg / 1.03 lbs
469.2 g / 4.6 N
|
słaby uchwyt |
| 20 mm |
320 Gs
32.0 mT
|
0.18 kg / 0.39 lbs
177.7 g / 1.7 N
|
słaby uchwyt |
| 30 mm |
141 Gs
14.1 mT
|
0.03 kg / 0.08 lbs
34.5 g / 0.3 N
|
słaby uchwyt |
| 50 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 40x15x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| 1 mm | Stal (~0.2) |
2.41 kg / 5.31 lbs
2408.0 g / 23.6 N
|
| 2 mm | Stal (~0.2) |
1.97 kg / 4.35 lbs
1972.0 g / 19.3 N
|
| 3 mm | Stal (~0.2) |
1.58 kg / 3.47 lbs
1576.0 g / 15.5 N
|
| 5 mm | Stal (~0.2) |
0.97 kg / 2.13 lbs
968.0 g / 9.5 N
|
| 10 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x15x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.26 kg / 9.40 lbs
4263.0 g / 41.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.84 kg / 6.27 lbs
2842.0 g / 27.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.42 kg / 3.13 lbs
1421.0 g / 13.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.11 kg / 15.66 lbs
7105.0 g / 69.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 40x15x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 1.57 lbs
710.5 g / 7.0 N
|
| 1 mm |
|
1.78 kg / 3.92 lbs
1776.3 g / 17.4 N
|
| 2 mm |
|
3.55 kg / 7.83 lbs
3552.5 g / 34.9 N
|
| 3 mm |
|
5.33 kg / 11.75 lbs
5328.8 g / 52.3 N
|
| 5 mm |
|
8.88 kg / 19.58 lbs
8881.3 g / 87.1 N
|
| 10 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 11 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
| 12 mm |
|
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 40x15x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.21 kg / 31.33 lbs
14210.0 g / 139.4 N
|
OK |
| 40 °C | -2.2% |
13.90 kg / 30.64 lbs
13897.4 g / 136.3 N
|
OK |
| 60 °C | -4.4% |
13.58 kg / 29.95 lbs
13584.8 g / 133.3 N
|
|
| 80 °C | -6.6% |
13.27 kg / 29.26 lbs
13272.1 g / 130.2 N
|
|
| 100 °C | -28.8% |
10.12 kg / 22.31 lbs
10117.5 g / 99.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 40x15x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
30.32 kg / 66.84 lbs
4 334 Gs
|
4.55 kg / 10.03 lbs
4547 g / 44.6 N
|
N/A |
| 1 mm |
28.06 kg / 61.86 lbs
5 508 Gs
|
4.21 kg / 9.28 lbs
4209 g / 41.3 N
|
25.25 kg / 55.67 lbs
~0 Gs
|
| 2 mm |
25.69 kg / 56.64 lbs
5 271 Gs
|
3.85 kg / 8.50 lbs
3854 g / 37.8 N
|
23.12 kg / 50.97 lbs
~0 Gs
|
| 3 mm |
23.33 kg / 51.43 lbs
5 023 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
21.00 kg / 46.29 lbs
~0 Gs
|
| 5 mm |
18.85 kg / 41.56 lbs
4 515 Gs
|
2.83 kg / 6.23 lbs
2828 g / 27.7 N
|
16.97 kg / 37.40 lbs
~0 Gs
|
| 10 mm |
10.32 kg / 22.75 lbs
3 341 Gs
|
1.55 kg / 3.41 lbs
1548 g / 15.2 N
|
9.29 kg / 20.48 lbs
~0 Gs
|
| 20 mm |
3.01 kg / 6.64 lbs
1 805 Gs
|
0.45 kg / 1.00 lbs
452 g / 4.4 N
|
2.71 kg / 5.98 lbs
~0 Gs
|
| 50 mm |
0.16 kg / 0.35 lbs
416 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.32 lbs
~0 Gs
|
| 60 mm |
0.07 kg / 0.16 lbs
282 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.08 lbs
199 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.04 lbs
144 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
108 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.01 lbs
83 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 40x15x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x15x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.53 km/h
(6.81 m/s)
|
0.63 J | |
| 30 mm |
40.13 km/h
(11.15 m/s)
|
1.68 J | |
| 50 mm |
51.74 km/h
(14.37 m/s)
|
2.79 J | |
| 100 mm |
73.16 km/h
(20.32 m/s)
|
5.58 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 40x15x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x15x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 905 Mx | 169.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x15x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.21 kg | Standard |
| Woda (dno rzeki) |
16.27 kg
(+2.06 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – za chuda płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Ochrona urządzeń
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Zakaz obróbki
Pył powstający podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga: zadławienie
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Alergia na nikiel
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Rozruszniki serca
Pacjenci z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Ochrona oczu
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
