MPL 25x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020137
GTIN/EAN: 5906301811435
Długość
25 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
46.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.39 kg / 190.25 N
Indukcja magnetyczna
361.04 mT / 3610 Gs
Powłoka
[NiCuNi] nikiel
20.29 ZŁ z VAT / szt. + cena za transport
16.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się korzystając z
nasz formularz online
na stronie kontakt.
Udźwig i formę magnesu zobaczysz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MPL 25x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 25x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020137 |
| GTIN/EAN | 5906301811435 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 46.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.39 kg / 190.25 N |
| Indukcja magnetyczna ~ ? | 361.04 mT / 3610 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu neodymowego - parametry techniczne
Poniższe wartości są wynik symulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
MPL 25x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3610 Gs
361.0 mT
|
19.39 kg / 19390.0 g
190.2 N
|
miażdżący |
| 1 mm |
3392 Gs
339.2 mT
|
17.12 kg / 17117.7 g
167.9 N
|
miażdżący |
| 2 mm |
3156 Gs
315.6 mT
|
14.82 kg / 14822.5 g
145.4 N
|
miażdżący |
| 3 mm |
2913 Gs
291.3 mT
|
12.63 kg / 12631.8 g
123.9 N
|
miażdżący |
| 5 mm |
2436 Gs
243.6 mT
|
8.83 kg / 8827.9 g
86.6 N
|
mocny |
| 10 mm |
1464 Gs
146.4 mT
|
3.19 kg / 3191.5 g
31.3 N
|
mocny |
| 15 mm |
872 Gs
87.2 mT
|
1.13 kg / 1131.5 g
11.1 N
|
niskie ryzyko |
| 20 mm |
538 Gs
53.8 mT
|
0.43 kg / 430.4 g
4.2 N
|
niskie ryzyko |
| 30 mm |
234 Gs
23.4 mT
|
0.08 kg / 81.8 g
0.8 N
|
niskie ryzyko |
| 50 mm |
68 Gs
6.8 mT
|
0.01 kg / 6.9 g
0.1 N
|
niskie ryzyko |
MPL 25x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.88 kg / 3878.0 g
38.0 N
|
| 1 mm | Stal (~0.2) |
3.42 kg / 3424.0 g
33.6 N
|
| 2 mm | Stal (~0.2) |
2.96 kg / 2964.0 g
29.1 N
|
| 3 mm | Stal (~0.2) |
2.53 kg / 2526.0 g
24.8 N
|
| 5 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 10 mm | Stal (~0.2) |
0.64 kg / 638.0 g
6.3 N
|
| 15 mm | Stal (~0.2) |
0.23 kg / 226.0 g
2.2 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 86.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MPL 25x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.82 kg / 5817.0 g
57.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.88 kg / 3878.0 g
38.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.94 kg / 1939.0 g
19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.70 kg / 9695.0 g
95.1 N
|
MPL 25x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 969.5 g
9.5 N
|
| 1 mm |
|
2.42 kg / 2423.8 g
23.8 N
|
| 2 mm |
|
4.85 kg / 4847.5 g
47.6 N
|
| 5 mm |
|
12.12 kg / 12118.8 g
118.9 N
|
| 10 mm |
|
19.39 kg / 19390.0 g
190.2 N
|
MPL 25x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.39 kg / 19390.0 g
190.2 N
|
OK |
| 40 °C | -2.2% |
18.96 kg / 18963.4 g
186.0 N
|
OK |
| 60 °C | -4.4% |
18.54 kg / 18536.8 g
181.8 N
|
|
| 80 °C | -6.6% |
18.11 kg / 18110.3 g
177.7 N
|
|
| 100 °C | -28.8% |
13.81 kg / 13805.7 g
135.4 N
|
MPL 25x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
50.20 kg / 50204 g
492.5 N
5 073 Gs
|
N/A |
| 1 mm |
47.31 kg / 47311 g
464.1 N
7 008 Gs
|
42.58 kg / 42580 g
417.7 N
~0 Gs
|
| 2 mm |
44.32 kg / 44321 g
434.8 N
6 783 Gs
|
39.89 kg / 39888 g
391.3 N
~0 Gs
|
| 3 mm |
41.33 kg / 41330 g
405.5 N
6 550 Gs
|
37.20 kg / 37197 g
364.9 N
~0 Gs
|
| 5 mm |
35.49 kg / 35494 g
348.2 N
6 070 Gs
|
31.94 kg / 31945 g
313.4 N
~0 Gs
|
| 10 mm |
22.86 kg / 22857 g
224.2 N
4 871 Gs
|
20.57 kg / 20571 g
201.8 N
~0 Gs
|
| 20 mm |
8.26 kg / 8263 g
81.1 N
2 929 Gs
|
7.44 kg / 7437 g
73.0 N
~0 Gs
|
| 50 mm |
0.46 kg / 465 g
4.6 N
695 Gs
|
0.42 kg / 418 g
4.1 N
~0 Gs
|
MPL 25x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MPL 25x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.52 km/h
(6.26 m/s)
|
0.92 J | |
| 30 mm |
35.62 km/h
(9.89 m/s)
|
2.29 J | |
| 50 mm |
45.87 km/h
(12.74 m/s)
|
3.81 J | |
| 100 mm |
64.86 km/h
(18.02 m/s)
|
7.61 J |
MPL 25x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 25x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 497 Mx | 235.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
MPL 25x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.39 kg | Standard |
| Woda (dno rzeki) |
22.20 kg
(+2.81 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Najwyższa nośność magnesu – co ma na to wpływ?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Urazy ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Unikaj kontaktu w przypadku alergii
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Bezpieczny dystans
Unikaj zbliżania magnesów do portfela, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe działają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
