MPL 30x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020138
GTIN/EAN: 5906301811442
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.89 kg / 87.23 N
Indukcja magnetyczna
329.52 mT / 3295 Gs
Powłoka
[NiCuNi] nikiel
4.26 ZŁ z VAT / szt. + cena za transport
3.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie napisz poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości a także wygląd magnesu skontrolujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 30x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020138 |
| GTIN/EAN | 5906301811442 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.89 kg / 87.23 N |
| Indukcja magnetyczna ~ ? | 329.52 mT / 3295 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Przedstawione dane stanowią rezultat analizy fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 30x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3294 Gs
329.4 mT
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
uwaga |
| 1 mm |
2866 Gs
286.6 mT
|
6.73 kg / 14.84 lbs
6731.1 g / 66.0 N
|
uwaga |
| 2 mm |
2424 Gs
242.4 mT
|
4.82 kg / 10.62 lbs
4816.4 g / 47.2 N
|
uwaga |
| 3 mm |
2022 Gs
202.2 mT
|
3.35 kg / 7.38 lbs
3349.6 g / 32.9 N
|
uwaga |
| 5 mm |
1397 Gs
139.7 mT
|
1.60 kg / 3.53 lbs
1600.3 g / 15.7 N
|
słaby uchwyt |
| 10 mm |
615 Gs
61.5 mT
|
0.31 kg / 0.68 lbs
309.8 g / 3.0 N
|
słaby uchwyt |
| 15 mm |
314 Gs
31.4 mT
|
0.08 kg / 0.18 lbs
80.6 g / 0.8 N
|
słaby uchwyt |
| 20 mm |
177 Gs
17.7 mT
|
0.03 kg / 0.06 lbs
25.8 g / 0.3 N
|
słaby uchwyt |
| 30 mm |
70 Gs
7.0 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 30x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 1 mm | Stal (~0.2) |
1.35 kg / 2.97 lbs
1346.0 g / 13.2 N
|
| 2 mm | Stal (~0.2) |
0.96 kg / 2.13 lbs
964.0 g / 9.5 N
|
| 3 mm | Stal (~0.2) |
0.67 kg / 1.48 lbs
670.0 g / 6.6 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 30x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.67 kg / 5.88 lbs
2667.0 g / 26.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.89 kg / 1.96 lbs
889.0 g / 8.7 N
|
| 1 mm |
|
2.22 kg / 4.90 lbs
2222.5 g / 21.8 N
|
| 2 mm |
|
4.45 kg / 9.80 lbs
4445.0 g / 43.6 N
|
| 3 mm |
|
6.67 kg / 14.70 lbs
6667.5 g / 65.4 N
|
| 5 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 10 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 11 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
| 12 mm |
|
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 30x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.89 kg / 19.60 lbs
8890.0 g / 87.2 N
|
OK |
| 40 °C | -2.2% |
8.69 kg / 19.17 lbs
8694.4 g / 85.3 N
|
OK |
| 60 °C | -4.4% |
8.50 kg / 18.74 lbs
8498.8 g / 83.4 N
|
|
| 80 °C | -6.6% |
8.30 kg / 18.31 lbs
8303.3 g / 81.5 N
|
|
| 100 °C | -28.8% |
6.33 kg / 13.95 lbs
6329.7 g / 62.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 30x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.06 kg / 44.23 lbs
4 689 Gs
|
3.01 kg / 6.63 lbs
3010 g / 29.5 N
|
N/A |
| 1 mm |
17.63 kg / 38.86 lbs
6 174 Gs
|
2.64 kg / 5.83 lbs
2644 g / 25.9 N
|
15.86 kg / 34.98 lbs
~0 Gs
|
| 2 mm |
15.19 kg / 33.49 lbs
5 732 Gs
|
2.28 kg / 5.02 lbs
2279 g / 22.4 N
|
13.67 kg / 30.14 lbs
~0 Gs
|
| 3 mm |
12.92 kg / 28.47 lbs
5 285 Gs
|
1.94 kg / 4.27 lbs
1937 g / 19.0 N
|
11.62 kg / 25.63 lbs
~0 Gs
|
| 5 mm |
9.08 kg / 20.03 lbs
4 432 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.02 lbs
~0 Gs
|
| 10 mm |
3.61 kg / 7.96 lbs
2 795 Gs
|
0.54 kg / 1.19 lbs
542 g / 5.3 N
|
3.25 kg / 7.17 lbs
~0 Gs
|
| 20 mm |
0.70 kg / 1.54 lbs
1 230 Gs
|
0.10 kg / 0.23 lbs
105 g / 1.0 N
|
0.63 kg / 1.39 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
217 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
141 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
68 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 30x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 30x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.96 km/h
(8.04 m/s)
|
0.36 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.05 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
1.74 J | |
| 100 mm |
89.65 km/h
(24.90 m/s)
|
3.49 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 30x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 370 Mx | 93.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.89 kg | Standard |
| Woda (dno rzeki) |
10.18 kg
(+1.29 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka blacha nie przyjmuje całego pola, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Zakaz zabawy
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników posiada uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Sugerujemy używanie rękawic bezlateksowych.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Limity termiczne
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
