MPL 20x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020129
GTIN/EAN: 5906301811350
Długość
20 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
15.40 kg / 151.12 N
Indukcja magnetyczna
540.22 mT / 5402 Gs
Powłoka
[NiCuNi] nikiel
33.21 ZŁ z VAT / szt. + cena za transport
27.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz
przez naszą stronę.
Moc oraz wygląd elementów magnetycznych przetestujesz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna - MPL 20x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020129 |
| GTIN/EAN | 5906301811350 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 15.40 kg / 151.12 N |
| Indukcja magnetyczna ~ ? | 540.22 mT / 5402 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione wartości są wynik kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 20x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5400 Gs
540.0 mT
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
niebezpieczny! |
| 1 mm |
4910 Gs
491.0 mT
|
12.73 kg / 28.07 lbs
12732.2 g / 124.9 N
|
niebezpieczny! |
| 2 mm |
4423 Gs
442.3 mT
|
10.33 kg / 22.77 lbs
10328.3 g / 101.3 N
|
niebezpieczny! |
| 3 mm |
3955 Gs
395.5 mT
|
8.26 kg / 18.21 lbs
8258.3 g / 81.0 N
|
średnie ryzyko |
| 5 mm |
3114 Gs
311.4 mT
|
5.12 kg / 11.29 lbs
5120.3 g / 50.2 N
|
średnie ryzyko |
| 10 mm |
1671 Gs
167.1 mT
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
niskie ryzyko |
| 15 mm |
936 Gs
93.6 mT
|
0.46 kg / 1.02 lbs
463.0 g / 4.5 N
|
niskie ryzyko |
| 20 mm |
562 Gs
56.2 mT
|
0.17 kg / 0.37 lbs
167.1 g / 1.6 N
|
niskie ryzyko |
| 30 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.07 lbs
31.3 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 20x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| 1 mm | Stal (~0.2) |
2.55 kg / 5.61 lbs
2546.0 g / 25.0 N
|
| 2 mm | Stal (~0.2) |
2.07 kg / 4.55 lbs
2066.0 g / 20.3 N
|
| 3 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 5 mm | Stal (~0.2) |
1.02 kg / 2.26 lbs
1024.0 g / 10.0 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.62 kg / 10.19 lbs
4620.0 g / 45.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 20x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.24 lbs
1925.0 g / 18.9 N
|
| 2 mm |
|
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 3 mm |
|
5.78 kg / 12.73 lbs
5775.0 g / 56.7 N
|
| 5 mm |
|
9.63 kg / 21.22 lbs
9625.0 g / 94.4 N
|
| 10 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 11 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 12 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 20x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
OK |
| 40 °C | -2.2% |
15.06 kg / 33.20 lbs
15061.2 g / 147.8 N
|
OK |
| 60 °C | -4.4% |
14.72 kg / 32.46 lbs
14722.4 g / 144.4 N
|
OK |
| 80 °C | -6.6% |
14.38 kg / 31.71 lbs
14383.6 g / 141.1 N
|
|
| 100 °C | -28.8% |
10.96 kg / 24.17 lbs
10964.8 g / 107.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 20x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.92 kg / 158.55 lbs
5 962 Gs
|
10.79 kg / 23.78 lbs
10787 g / 105.8 N
|
N/A |
| 1 mm |
65.60 kg / 144.63 lbs
10 316 Gs
|
9.84 kg / 21.69 lbs
9840 g / 96.5 N
|
59.04 kg / 130.16 lbs
~0 Gs
|
| 2 mm |
59.46 kg / 131.08 lbs
9 821 Gs
|
8.92 kg / 19.66 lbs
8919 g / 87.5 N
|
53.51 kg / 117.97 lbs
~0 Gs
|
| 3 mm |
53.66 kg / 118.30 lbs
9 329 Gs
|
8.05 kg / 17.74 lbs
8049 g / 79.0 N
|
48.29 kg / 106.47 lbs
~0 Gs
|
| 5 mm |
43.20 kg / 95.24 lbs
8 371 Gs
|
6.48 kg / 14.29 lbs
6480 g / 63.6 N
|
38.88 kg / 85.71 lbs
~0 Gs
|
| 10 mm |
23.91 kg / 52.72 lbs
6 228 Gs
|
3.59 kg / 7.91 lbs
3587 g / 35.2 N
|
21.52 kg / 47.44 lbs
~0 Gs
|
| 20 mm |
6.89 kg / 15.19 lbs
3 343 Gs
|
1.03 kg / 2.28 lbs
1033 g / 10.1 N
|
6.20 kg / 13.67 lbs
~0 Gs
|
| 50 mm |
0.32 kg / 0.71 lbs
721 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.64 lbs
~0 Gs
|
| 60 mm |
0.15 kg / 0.32 lbs
487 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.16 lbs
344 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.09 lbs
251 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
189 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
146 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 20x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.10 km/h
(4.75 m/s)
|
0.68 J | |
| 30 mm |
28.02 km/h
(7.78 m/s)
|
1.82 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
3.02 J | |
| 100 mm |
51.09 km/h
(14.19 m/s)
|
6.04 J |
Tabela 9: Odporność na korozję
MPL 20x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 017 Mx | 220.2 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 15.40 kg | Standard |
| Woda (dno rzeki) |
17.63 kg
(+2.23 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Tylko dla dorosłych
Silne magnesy to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Niszczenie danych
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Potężne pole
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
