MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020136
GTIN/EAN: 5906301811428
Długość
25 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.72 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.72 kg / 75.74 N
Indukcja magnetyczna
299.70 mT / 2997 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie skontaktuj się korzystając z
formularz zapytania
w sekcji kontakt.
Masę i formę magnesu przetestujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020136 |
| GTIN/EAN | 5906301811428 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.72 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.72 kg / 75.74 N |
| Indukcja magnetyczna ~ ? | 299.70 mT / 2997 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Niniejsze informacje są wynik kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 25x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2996 Gs
299.6 mT
|
7.72 kg / 7720.0 g
75.7 N
|
średnie ryzyko |
| 1 mm |
2705 Gs
270.5 mT
|
6.29 kg / 6292.6 g
61.7 N
|
średnie ryzyko |
| 2 mm |
2384 Gs
238.4 mT
|
4.89 kg / 4886.6 g
47.9 N
|
średnie ryzyko |
| 3 mm |
2067 Gs
206.7 mT
|
3.67 kg / 3674.4 g
36.0 N
|
średnie ryzyko |
| 5 mm |
1517 Gs
151.7 mT
|
1.98 kg / 1979.6 g
19.4 N
|
niskie ryzyko |
| 10 mm |
702 Gs
70.2 mT
|
0.42 kg / 424.1 g
4.2 N
|
niskie ryzyko |
| 15 mm |
355 Gs
35.5 mT
|
0.11 kg / 108.6 g
1.1 N
|
niskie ryzyko |
| 20 mm |
198 Gs
19.8 mT
|
0.03 kg / 33.6 g
0.3 N
|
niskie ryzyko |
| 30 mm |
76 Gs
7.6 mT
|
0.01 kg / 5.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 25x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 1544.0 g
15.1 N
|
| 1 mm | Stal (~0.2) |
1.26 kg / 1258.0 g
12.3 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 978.0 g
9.6 N
|
| 3 mm | Stal (~0.2) |
0.73 kg / 734.0 g
7.2 N
|
| 5 mm | Stal (~0.2) |
0.40 kg / 396.0 g
3.9 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 25x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.32 kg / 2316.0 g
22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 1544.0 g
15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 772.0 g
7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.86 kg / 3860.0 g
37.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 25x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 772.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1930.0 g
18.9 N
|
| 2 mm |
|
3.86 kg / 3860.0 g
37.9 N
|
| 5 mm |
|
7.72 kg / 7720.0 g
75.7 N
|
| 10 mm |
|
7.72 kg / 7720.0 g
75.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 25x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.72 kg / 7720.0 g
75.7 N
|
OK |
| 40 °C | -2.2% |
7.55 kg / 7550.2 g
74.1 N
|
OK |
| 60 °C | -4.4% |
7.38 kg / 7380.3 g
72.4 N
|
|
| 80 °C | -6.6% |
7.21 kg / 7210.5 g
70.7 N
|
|
| 100 °C | -28.8% |
5.50 kg / 5496.6 g
53.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 25x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.29 kg / 17293 g
169.6 N
4 511 Gs
|
N/A |
| 1 mm |
15.73 kg / 15732 g
154.3 N
5 715 Gs
|
14.16 kg / 14159 g
138.9 N
~0 Gs
|
| 2 mm |
14.10 kg / 14096 g
138.3 N
5 410 Gs
|
12.69 kg / 12686 g
124.5 N
~0 Gs
|
| 3 mm |
12.48 kg / 12483 g
122.5 N
5 091 Gs
|
11.23 kg / 11235 g
110.2 N
~0 Gs
|
| 5 mm |
9.52 kg / 9522 g
93.4 N
4 446 Gs
|
8.57 kg / 8570 g
84.1 N
~0 Gs
|
| 10 mm |
4.43 kg / 4434 g
43.5 N
3 034 Gs
|
3.99 kg / 3991 g
39.2 N
~0 Gs
|
| 20 mm |
0.95 kg / 950 g
9.3 N
1 404 Gs
|
0.85 kg / 855 g
8.4 N
~0 Gs
|
| 50 mm |
0.03 kg / 27 g
0.3 N
238 Gs
|
0.02 kg / 25 g
0.2 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 25x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 25x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.76 km/h
(7.43 m/s)
|
0.32 J | |
| 30 mm |
44.85 km/h
(12.46 m/s)
|
0.91 J | |
| 50 mm |
57.88 km/h
(16.08 m/s)
|
1.51 J | |
| 100 mm |
81.85 km/h
(22.74 m/s)
|
3.03 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 25x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 25x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 639 Mx | 96.4 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.72 kg | Standard |
| Woda (dno rzeki) |
8.84 kg
(+1.12 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, która służy jako zwora magnetyczna
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
BHP przy magnesach
Reakcje alergiczne
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może wywołać silną reakcję alergiczną. Sugerujemy noszenie rękawic bezlateksowych.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Siła neodymu
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Niszczenie danych
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Zakłócenia GPS i telefonów
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Tylko dla dorosłych
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Pył jest łatwopalny
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
