MPL 25x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020392
GTIN/EAN: 5906301811893
Długość
25 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.89 kg / 18.56 N
Indukcja magnetyczna
120.03 mT / 1200 Gs
Powłoka
[NiCuNi] nikiel
2.39 ZŁ z VAT / szt. + cena za transport
1.940 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo daj znać przez
formularz kontaktowy
na naszej stronie.
Masę i kształt magnesów neodymowych zobaczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 25x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020392 |
| GTIN/EAN | 5906301811893 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.89 kg / 18.56 N |
| Indukcja magnetyczna ~ ? | 120.03 mT / 1200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione dane stanowią wynik symulacji matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 25x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1200 Gs
120.0 mT
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
niskie ryzyko |
| 1 mm |
1144 Gs
114.4 mT
|
1.72 kg / 3.79 lbs
1717.6 g / 16.8 N
|
niskie ryzyko |
| 2 mm |
1060 Gs
106.0 mT
|
1.48 kg / 3.25 lbs
1475.6 g / 14.5 N
|
niskie ryzyko |
| 3 mm |
961 Gs
96.1 mT
|
1.21 kg / 2.67 lbs
1212.1 g / 11.9 N
|
niskie ryzyko |
| 5 mm |
754 Gs
75.4 mT
|
0.75 kg / 1.65 lbs
746.8 g / 7.3 N
|
niskie ryzyko |
| 10 mm |
376 Gs
37.6 mT
|
0.19 kg / 0.41 lbs
185.6 g / 1.8 N
|
niskie ryzyko |
| 15 mm |
193 Gs
19.3 mT
|
0.05 kg / 0.11 lbs
48.9 g / 0.5 N
|
niskie ryzyko |
| 20 mm |
107 Gs
10.7 mT
|
0.02 kg / 0.03 lbs
15.0 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 25x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 2 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
242.0 g / 2.4 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 25x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.25 lbs
567.0 g / 5.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 25x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
472.5 g / 4.6 N
|
| 2 mm |
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.13 lbs
1417.5 g / 13.9 N
|
| 5 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 10 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 11 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 12 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 25x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
OK |
| 40 °C | -2.2% |
1.85 kg / 4.08 lbs
1848.4 g / 18.1 N
|
OK |
| 60 °C | -4.4% |
1.81 kg / 3.98 lbs
1806.8 g / 17.7 N
|
|
| 80 °C | -6.6% |
1.77 kg / 3.89 lbs
1765.3 g / 17.3 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.97 lbs
1345.7 g / 13.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 25x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
2 260 Gs
|
0.50 kg / 1.10 lbs
499 g / 4.9 N
|
N/A |
| 1 mm |
3.20 kg / 7.05 lbs
2 353 Gs
|
0.48 kg / 1.06 lbs
480 g / 4.7 N
|
2.88 kg / 6.35 lbs
~0 Gs
|
| 2 mm |
3.03 kg / 6.67 lbs
2 288 Gs
|
0.45 kg / 1.00 lbs
454 g / 4.5 N
|
2.72 kg / 6.00 lbs
~0 Gs
|
| 3 mm |
2.82 kg / 6.22 lbs
2 210 Gs
|
0.42 kg / 0.93 lbs
423 g / 4.2 N
|
2.54 kg / 5.60 lbs
~0 Gs
|
| 5 mm |
2.37 kg / 5.22 lbs
2 024 Gs
|
0.36 kg / 0.78 lbs
355 g / 3.5 N
|
2.13 kg / 4.70 lbs
~0 Gs
|
| 10 mm |
1.32 kg / 2.90 lbs
1 509 Gs
|
0.20 kg / 0.44 lbs
197 g / 1.9 N
|
1.18 kg / 2.61 lbs
~0 Gs
|
| 20 mm |
0.33 kg / 0.72 lbs
752 Gs
|
0.05 kg / 0.11 lbs
49 g / 0.5 N
|
0.29 kg / 0.65 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
81 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 25x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 25x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.58 km/h
(5.44 m/s)
|
0.08 J | |
| 30 mm |
32.03 km/h
(8.90 m/s)
|
0.22 J | |
| 50 mm |
41.32 km/h
(11.48 m/s)
|
0.37 J | |
| 100 mm |
58.43 km/h
(16.23 m/s)
|
0.74 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 25x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 25x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 600 Mx | 56.0 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.89 kg | Standard |
| Woda (dno rzeki) |
2.16 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (bez powłok)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – obecność ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
Ostrzeżenia
Uszkodzenia ciała
Silne magnesy mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Kompas i GPS
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Nie lekceważ mocy
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Uczulenie na powłokę
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Sugerujemy noszenie rękawic bezlateksowych.
Łatwopalność
Proszek powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
