MPL 30x15x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020389
GTIN/EAN: 5906301811886
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
33.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
16.84 kg / 165.22 N
Indukcja magnetyczna
413.45 mT / 4135 Gs
Powłoka
[NiCuNi] nikiel
24.48 ZŁ z VAT / szt. + cena za transport
19.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz przez
formularz zgłoszeniowy
przez naszą stronę.
Właściwości a także wygląd magnesu skontrolujesz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 30x15x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020389 |
| GTIN/EAN | 5906301811886 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 33.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 16.84 kg / 165.22 N |
| Indukcja magnetyczna ~ ? | 413.45 mT / 4135 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione wartości są rezultat kalkulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 30x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4133 Gs
413.3 mT
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
miażdżący |
| 1 mm |
3754 Gs
375.4 mT
|
13.89 kg / 30.62 lbs
13889.5 g / 136.3 N
|
miażdżący |
| 2 mm |
3365 Gs
336.5 mT
|
11.16 kg / 24.60 lbs
11159.2 g / 109.5 N
|
miażdżący |
| 3 mm |
2988 Gs
298.8 mT
|
8.80 kg / 19.41 lbs
8803.6 g / 86.4 N
|
średnie ryzyko |
| 5 mm |
2321 Gs
232.1 mT
|
5.31 kg / 11.71 lbs
5309.9 g / 52.1 N
|
średnie ryzyko |
| 10 mm |
1225 Gs
122.5 mT
|
1.48 kg / 3.26 lbs
1480.1 g / 14.5 N
|
bezpieczny |
| 15 mm |
684 Gs
68.4 mT
|
0.46 kg / 1.02 lbs
461.6 g / 4.5 N
|
bezpieczny |
| 20 mm |
409 Gs
40.9 mT
|
0.16 kg / 0.36 lbs
164.8 g / 1.6 N
|
bezpieczny |
| 30 mm |
173 Gs
17.3 mT
|
0.03 kg / 0.07 lbs
29.6 g / 0.3 N
|
bezpieczny |
| 50 mm |
50 Gs
5.0 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 30x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| 1 mm | Stal (~0.2) |
2.78 kg / 6.12 lbs
2778.0 g / 27.3 N
|
| 2 mm | Stal (~0.2) |
2.23 kg / 4.92 lbs
2232.0 g / 21.9 N
|
| 3 mm | Stal (~0.2) |
1.76 kg / 3.88 lbs
1760.0 g / 17.3 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 30x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.05 kg / 11.14 lbs
5052.0 g / 49.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.68 kg / 3.71 lbs
1684.0 g / 16.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.42 kg / 18.56 lbs
8420.0 g / 82.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 30x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 1 mm |
|
2.11 kg / 4.64 lbs
2105.0 g / 20.7 N
|
| 2 mm |
|
4.21 kg / 9.28 lbs
4210.0 g / 41.3 N
|
| 3 mm |
|
6.31 kg / 13.92 lbs
6315.0 g / 62.0 N
|
| 5 mm |
|
10.53 kg / 23.20 lbs
10525.0 g / 103.3 N
|
| 10 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 11 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 12 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 30x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
OK |
| 40 °C | -2.2% |
16.47 kg / 36.31 lbs
16469.5 g / 161.6 N
|
OK |
| 60 °C | -4.4% |
16.10 kg / 35.49 lbs
16099.0 g / 157.9 N
|
|
| 80 °C | -6.6% |
15.73 kg / 34.68 lbs
15728.6 g / 154.3 N
|
|
| 100 °C | -28.8% |
11.99 kg / 26.43 lbs
11990.1 g / 117.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 30x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
47.39 kg / 104.48 lbs
5 357 Gs
|
7.11 kg / 15.67 lbs
7109 g / 69.7 N
|
N/A |
| 1 mm |
43.23 kg / 95.30 lbs
7 895 Gs
|
6.48 kg / 14.29 lbs
6484 g / 63.6 N
|
38.90 kg / 85.77 lbs
~0 Gs
|
| 2 mm |
39.09 kg / 86.17 lbs
7 507 Gs
|
5.86 kg / 12.93 lbs
5863 g / 57.5 N
|
35.18 kg / 77.56 lbs
~0 Gs
|
| 3 mm |
35.13 kg / 77.45 lbs
7 117 Gs
|
5.27 kg / 11.62 lbs
5270 g / 51.7 N
|
31.62 kg / 69.70 lbs
~0 Gs
|
| 5 mm |
27.95 kg / 61.61 lbs
6 348 Gs
|
4.19 kg / 9.24 lbs
4192 g / 41.1 N
|
25.15 kg / 55.45 lbs
~0 Gs
|
| 10 mm |
14.94 kg / 32.94 lbs
4 642 Gs
|
2.24 kg / 4.94 lbs
2242 g / 22.0 N
|
13.45 kg / 29.65 lbs
~0 Gs
|
| 20 mm |
4.17 kg / 9.18 lbs
2 451 Gs
|
0.62 kg / 1.38 lbs
625 g / 6.1 N
|
3.75 kg / 8.26 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.41 lbs
519 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.08 kg / 0.18 lbs
347 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.09 lbs
242 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
175 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
99 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 30x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.73 km/h
(6.59 m/s)
|
0.73 J | |
| 30 mm |
39.06 km/h
(10.85 m/s)
|
1.99 J | |
| 50 mm |
50.38 km/h
(13.99 m/s)
|
3.30 J | |
| 100 mm |
71.24 km/h
(19.79 m/s)
|
6.61 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 30x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 390 Mx | 183.9 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 30x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.84 kg | Standard |
| Woda (dno rzeki) |
19.28 kg
(+2.44 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Alergia na nikiel
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
To nie jest zabawka
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Kompas i GPS
Intensywne promieniowanie magnetyczne destabilizuje działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Limity termiczne
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Zagrożenie życia
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zasady obsługi
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
