MPL 40x10x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020397
GTIN/EAN: 5906301811909
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
15 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.85 kg / 116.27 N
Indukcja magnetyczna
321.37 mT / 3214 Gs
Powłoka
[NiCuNi] nikiel
9.93 ZŁ z VAT / szt. + cena za transport
8.07 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie daj znać za pomocą
formularz zgłoszeniowy
na naszej stronie.
Właściwości oraz kształt magnesu sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Dane produktu - MPL 40x10x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020397 |
| GTIN/EAN | 5906301811909 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.85 kg / 116.27 N |
| Indukcja magnetyczna ~ ? | 321.37 mT / 3214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe informacje są wynik analizy matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 40x10x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
niebezpieczny! |
| 1 mm |
2791 Gs
279.1 mT
|
8.95 kg / 19.73 lbs
8947.7 g / 87.8 N
|
średnie ryzyko |
| 2 mm |
2358 Gs
235.8 mT
|
6.38 kg / 14.08 lbs
6384.9 g / 62.6 N
|
średnie ryzyko |
| 3 mm |
1965 Gs
196.5 mT
|
4.43 kg / 9.77 lbs
4432.4 g / 43.5 N
|
średnie ryzyko |
| 5 mm |
1360 Gs
136.0 mT
|
2.12 kg / 4.68 lbs
2122.9 g / 20.8 N
|
średnie ryzyko |
| 10 mm |
615 Gs
61.5 mT
|
0.43 kg / 0.96 lbs
434.1 g / 4.3 N
|
słaby uchwyt |
| 15 mm |
329 Gs
32.9 mT
|
0.12 kg / 0.27 lbs
124.5 g / 1.2 N
|
słaby uchwyt |
| 20 mm |
195 Gs
19.5 mT
|
0.04 kg / 0.10 lbs
43.9 g / 0.4 N
|
słaby uchwyt |
| 30 mm |
83 Gs
8.3 mT
|
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
słaby uchwyt |
| 50 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 40x10x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.37 kg / 5.22 lbs
2370.0 g / 23.2 N
|
| 1 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1790.0 g / 17.6 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
424.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x10x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.55 kg / 7.84 lbs
3555.0 g / 34.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.37 kg / 5.22 lbs
2370.0 g / 23.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.19 kg / 2.61 lbs
1185.0 g / 11.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.93 kg / 13.06 lbs
5925.0 g / 58.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 40x10x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.59 kg / 1.31 lbs
592.5 g / 5.8 N
|
| 1 mm |
|
1.48 kg / 3.27 lbs
1481.3 g / 14.5 N
|
| 2 mm |
|
2.96 kg / 6.53 lbs
2962.5 g / 29.1 N
|
| 3 mm |
|
4.44 kg / 9.80 lbs
4443.8 g / 43.6 N
|
| 5 mm |
|
7.41 kg / 16.33 lbs
7406.3 g / 72.7 N
|
| 10 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
| 11 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
| 12 mm |
|
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 40x10x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.85 kg / 26.12 lbs
11850.0 g / 116.2 N
|
OK |
| 40 °C | -2.2% |
11.59 kg / 25.55 lbs
11589.3 g / 113.7 N
|
OK |
| 60 °C | -4.4% |
11.33 kg / 24.98 lbs
11328.6 g / 111.1 N
|
|
| 80 °C | -6.6% |
11.07 kg / 24.40 lbs
11067.9 g / 108.6 N
|
|
| 100 °C | -28.8% |
8.44 kg / 18.60 lbs
8437.2 g / 82.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 40x10x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
25.44 kg / 56.10 lbs
4 569 Gs
|
3.82 kg / 8.41 lbs
3817 g / 37.4 N
|
N/A |
| 1 mm |
22.33 kg / 49.22 lbs
6 018 Gs
|
3.35 kg / 7.38 lbs
3349 g / 32.9 N
|
20.09 kg / 44.30 lbs
~0 Gs
|
| 2 mm |
19.21 kg / 42.36 lbs
5 582 Gs
|
2.88 kg / 6.35 lbs
2882 g / 28.3 N
|
17.29 kg / 38.12 lbs
~0 Gs
|
| 3 mm |
16.31 kg / 35.96 lbs
5 144 Gs
|
2.45 kg / 5.39 lbs
2447 g / 24.0 N
|
14.68 kg / 32.36 lbs
~0 Gs
|
| 5 mm |
11.45 kg / 25.23 lbs
4 309 Gs
|
1.72 kg / 3.78 lbs
1717 g / 16.8 N
|
10.30 kg / 22.71 lbs
~0 Gs
|
| 10 mm |
4.56 kg / 10.05 lbs
2 719 Gs
|
0.68 kg / 1.51 lbs
684 g / 6.7 N
|
4.10 kg / 9.04 lbs
~0 Gs
|
| 20 mm |
0.93 kg / 2.05 lbs
1 230 Gs
|
0.14 kg / 0.31 lbs
140 g / 1.4 N
|
0.84 kg / 1.85 lbs
~0 Gs
|
| 50 mm |
0.04 kg / 0.08 lbs
249 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
167 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
116 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 40x10x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 40x10x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.49 J | |
| 30 mm |
49.12 km/h
(13.64 m/s)
|
1.40 J | |
| 50 mm |
63.39 km/h
(17.61 m/s)
|
2.33 J | |
| 100 mm |
89.64 km/h
(24.90 m/s)
|
4.65 J |
Tabela 9: Odporność na korozję
MPL 40x10x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x10x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 419 Mx | 114.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x10x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.85 kg | Standard |
| Woda (dno rzeki) |
13.57 kg
(+1.72 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- przy zerowej szczelinie (bez farby)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uwaga na odpryski
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Reakcje alergiczne
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Nie lekceważ mocy
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Limity termiczne
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
