MPL 15x3x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020122
GTIN: 5906301811282
Długość
15 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
2.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.90 kg / 18.68 N
Indukcja magnetyczna
543.23 mT / 5432 Gs
Powłoka
[NiCuNi] nikiel
0.726 ZŁ z VAT / szt. + cena za transport
0.590 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie daj znać poprzez
nasz formularz online
na stronie kontaktowej.
Siłę oraz formę magnesów neodymowych obliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 15x3x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 15x3x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020122 |
| GTIN | 5906301811282 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 2.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.90 kg / 18.68 N |
| Indukcja magnetyczna ~ ? | 543.23 mT / 5432 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane są bezpośredni efekt kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy NdFeB. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
MPL 15x3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5423 Gs
542.3 mT
|
1.90 kg / 1900.0 g
18.6 N
|
niskie ryzyko |
| 1 mm |
3221 Gs
322.1 mT
|
0.67 kg / 670.2 g
6.6 N
|
niskie ryzyko |
| 2 mm |
1942 Gs
194.2 mT
|
0.24 kg / 243.7 g
2.4 N
|
niskie ryzyko |
| 3 mm |
1274 Gs
127.4 mT
|
0.10 kg / 104.9 g
1.0 N
|
niskie ryzyko |
| 5 mm |
652 Gs
65.2 mT
|
0.03 kg / 27.5 g
0.3 N
|
niskie ryzyko |
| 10 mm |
195 Gs
19.5 mT
|
0.00 kg / 2.5 g
0.0 N
|
niskie ryzyko |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 15x3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 134.0 g
1.3 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 15x3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 570.0 g
5.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 380.0 g
3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 190.0 g
1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 950.0 g
9.3 N
|
MPL 15x3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 190.0 g
1.9 N
|
| 1 mm |
|
0.48 kg / 475.0 g
4.7 N
|
| 2 mm |
|
0.95 kg / 950.0 g
9.3 N
|
| 5 mm |
|
1.90 kg / 1900.0 g
18.6 N
|
| 10 mm |
|
1.90 kg / 1900.0 g
18.6 N
|
MPL 15x3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.90 kg / 1900.0 g
18.6 N
|
OK |
| 40 °C | -2.2% |
1.86 kg / 1858.2 g
18.2 N
|
OK |
| 60 °C | -4.4% |
1.82 kg / 1816.4 g
17.8 N
|
OK |
| 80 °C | -6.6% |
1.77 kg / 1774.6 g
17.4 N
|
|
| 100 °C | -28.8% |
1.35 kg / 1352.8 g
13.3 N
|
MPL 15x3x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
8.16 kg / 8158 g
80.0 N
5 914 Gs
|
N/A |
| 1 mm |
4.96 kg / 4964 g
48.7 N
8 460 Gs
|
4.47 kg / 4468 g
43.8 N
~0 Gs
|
| 2 mm |
2.88 kg / 2878 g
28.2 N
6 441 Gs
|
2.59 kg / 2590 g
25.4 N
~0 Gs
|
| 3 mm |
1.70 kg / 1699 g
16.7 N
4 950 Gs
|
1.53 kg / 1529 g
15.0 N
~0 Gs
|
| 5 mm |
0.67 kg / 673 g
6.6 N
3 116 Gs
|
0.61 kg / 606 g
5.9 N
~0 Gs
|
| 10 mm |
0.12 kg / 118 g
1.2 N
1 304 Gs
|
0.11 kg / 106 g
1.0 N
~0 Gs
|
| 20 mm |
0.01 kg / 11 g
0.1 N
391 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
46 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 15x3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 15x3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.88 km/h
(8.58 m/s)
|
0.07 J | |
| 30 mm |
53.44 km/h
(14.84 m/s)
|
0.22 J | |
| 50 mm |
68.99 km/h
(19.16 m/s)
|
0.37 J | |
| 100 mm |
97.57 km/h
(27.10 m/s)
|
0.75 J |
MPL 15x3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 15x3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 390 Mx | 23.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
MPL 15x3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.90 kg | Standard |
| Woda (dno rzeki) |
2.18 kg
(+0.28 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu NdFeB.
Poza potężną wydajnością magnetyczną, te produkty gwarantują wiele innych atutów::
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
Widoczny w opisie parametr udźwigu reprezentuje siły granicznej, zarejestrowanej w warunkach laboratoryjnych, a mianowicie:
- z użyciem podłoża ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (bez powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
Warto wiedzieć, iż udźwig roboczy będzie inne zależnie od następujących czynników, zaczynając od najistotniejszych:
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda stal nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
* Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
Ostrzeżenia
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Reakcje alergiczne
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Elektronika precyzyjna
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Łatwopalność
Proszek powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Rozprysk materiału
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Potężne pole
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Uwaga!
Szukasz szczegółów? Przeczytaj nasz artykuł: Czy magnesy są groźne?
