MPL 15x3x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020122
GTIN/EAN: 5906301811282
Długość
15 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
2.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.90 kg / 18.68 N
Indukcja magnetyczna
543.23 mT / 5432 Gs
Powłoka
[NiCuNi] nikiel
0.726 ZŁ z VAT / szt. + cena za transport
0.590 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz przez
formularz zgłoszeniowy
na stronie kontakt.
Udźwig oraz formę magnesu przetestujesz u nas w
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MPL 15x3x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x3x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020122 |
| GTIN/EAN | 5906301811282 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 2.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.90 kg / 18.68 N |
| Indukcja magnetyczna ~ ? | 543.23 mT / 5432 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe dane stanowią rezultat symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 15x3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5423 Gs
542.3 mT
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
niskie ryzyko |
| 1 mm |
3221 Gs
322.1 mT
|
0.67 kg / 1.48 lbs
670.2 g / 6.6 N
|
niskie ryzyko |
| 2 mm |
1942 Gs
194.2 mT
|
0.24 kg / 0.54 lbs
243.7 g / 2.4 N
|
niskie ryzyko |
| 3 mm |
1274 Gs
127.4 mT
|
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
|
niskie ryzyko |
| 5 mm |
652 Gs
65.2 mT
|
0.03 kg / 0.06 lbs
27.5 g / 0.3 N
|
niskie ryzyko |
| 10 mm |
195 Gs
19.5 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 15x3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 15x3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 15x3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 2 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.14 lbs
1425.0 g / 14.0 N
|
| 5 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 10 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 11 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 12 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 15x3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
OK |
| 40 °C | -2.2% |
1.86 kg / 4.10 lbs
1858.2 g / 18.2 N
|
OK |
| 60 °C | -4.4% |
1.82 kg / 4.00 lbs
1816.4 g / 17.8 N
|
OK |
| 80 °C | -6.6% |
1.77 kg / 3.91 lbs
1774.6 g / 17.4 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.98 lbs
1352.8 g / 13.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 15x3x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.16 kg / 17.99 lbs
5 914 Gs
|
1.22 kg / 2.70 lbs
1224 g / 12.0 N
|
N/A |
| 1 mm |
4.96 kg / 10.94 lbs
8 460 Gs
|
0.74 kg / 1.64 lbs
745 g / 7.3 N
|
4.47 kg / 9.85 lbs
~0 Gs
|
| 2 mm |
2.88 kg / 6.34 lbs
6 441 Gs
|
0.43 kg / 0.95 lbs
432 g / 4.2 N
|
2.59 kg / 5.71 lbs
~0 Gs
|
| 3 mm |
1.70 kg / 3.75 lbs
4 950 Gs
|
0.25 kg / 0.56 lbs
255 g / 2.5 N
|
1.53 kg / 3.37 lbs
~0 Gs
|
| 5 mm |
0.67 kg / 1.48 lbs
3 116 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.61 kg / 1.34 lbs
~0 Gs
|
| 10 mm |
0.12 kg / 0.26 lbs
1 304 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
391 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 15x3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 15x3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.88 km/h
(8.58 m/s)
|
0.07 J | |
| 30 mm |
53.44 km/h
(14.84 m/s)
|
0.22 J | |
| 50 mm |
68.99 km/h
(19.16 m/s)
|
0.37 J | |
| 100 mm |
97.57 km/h
(27.10 m/s)
|
0.75 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 15x3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 15x3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 390 Mx | 23.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 15x3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.90 kg | Standard |
| Woda (dno rzeki) |
2.18 kg
(+0.28 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- przy bezpośrednim styku (bez farby)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Reakcje alergiczne
Pewna grupa użytkowników ma alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Wskazane jest stosowanie rękawic bezlateksowych.
Zakaz obróbki
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko złamań
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Świadome użytkowanie
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Nie zbliżaj do komputera
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Nie dawać dzieciom
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie implantu.
