MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo skontaktuj się poprzez
formularz
na stronie kontaktowej.
Udźwig a także kształt magnesów neodymowych testujesz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Przedstawione informacje są wynik kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
krytyczny poziom |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 144.20 lbs
65408.0 g / 641.7 N
|
krytyczny poziom |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 133.72 lbs
60652.7 g / 595.0 N
|
krytyczny poziom |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 123.35 lbs
55950.5 g / 548.9 N
|
krytyczny poziom |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 103.47 lbs
46935.3 g / 460.4 N
|
krytyczny poziom |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 62.40 lbs
28306.3 g / 277.7 N
|
krytyczny poziom |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 35.48 lbs
16095.6 g / 157.9 N
|
krytyczny poziom |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 19.76 lbs
8963.2 g / 87.9 N
|
uwaga |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 6.31 lbs
2863.1 g / 28.1 N
|
uwaga |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 0.89 lbs
402.4 g / 3.9 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 28.84 lbs
13082.0 g / 128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 24.67 lbs
11190.0 g / 109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 12.48 lbs
5662.0 g / 55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 1.26 lbs
572.0 g / 5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 46.36 lbs
21030.0 g / 206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 15.45 lbs
7010.0 g / 68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 77.27 lbs
35050.0 g / 343.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 5.15 lbs
2336.7 g / 22.9 N
|
| 1 mm |
|
5.84 kg / 12.88 lbs
5841.7 g / 57.3 N
|
| 2 mm |
|
11.68 kg / 25.76 lbs
11683.3 g / 114.6 N
|
| 3 mm |
|
17.53 kg / 38.64 lbs
17525.0 g / 171.9 N
|
| 5 mm |
|
29.21 kg / 64.39 lbs
29208.3 g / 286.5 N
|
| 10 mm |
|
58.42 kg / 128.79 lbs
58416.7 g / 573.1 N
|
| 11 mm |
|
64.26 kg / 141.67 lbs
64258.3 g / 630.4 N
|
| 12 mm |
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 151.14 lbs
68557.8 g / 672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 147.74 lbs
67015.6 g / 657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 144.34 lbs
65473.4 g / 642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 110.04 lbs
49911.2 g / 489.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
181.46 kg / 400.06 lbs
5 255 Gs
|
27.22 kg / 60.01 lbs
27220 g / 267.0 N
|
N/A |
| 1 mm |
175.47 kg / 386.84 lbs
7 615 Gs
|
26.32 kg / 58.03 lbs
26321 g / 258.2 N
|
157.92 kg / 348.16 lbs
~0 Gs
|
| 2 mm |
169.32 kg / 373.28 lbs
7 480 Gs
|
25.40 kg / 55.99 lbs
25398 g / 249.2 N
|
152.39 kg / 335.96 lbs
~0 Gs
|
| 3 mm |
163.16 kg / 359.70 lbs
7 343 Gs
|
24.47 kg / 53.96 lbs
24474 g / 240.1 N
|
146.84 kg / 323.73 lbs
~0 Gs
|
| 5 mm |
150.90 kg / 332.67 lbs
7 061 Gs
|
22.63 kg / 49.90 lbs
22634 g / 222.0 N
|
135.81 kg / 299.40 lbs
~0 Gs
|
| 10 mm |
121.50 kg / 267.86 lbs
6 336 Gs
|
18.22 kg / 40.18 lbs
18225 g / 178.8 N
|
109.35 kg / 241.07 lbs
~0 Gs
|
| 20 mm |
73.28 kg / 161.54 lbs
4 921 Gs
|
10.99 kg / 24.23 lbs
10991 g / 107.8 N
|
65.95 kg / 145.39 lbs
~0 Gs
|
| 50 mm |
12.99 kg / 28.63 lbs
2 071 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.76 lbs
~0 Gs
|
| 60 mm |
7.41 kg / 16.34 lbs
1 565 Gs
|
1.11 kg / 2.45 lbs
1112 g / 10.9 N
|
6.67 kg / 14.71 lbs
~0 Gs
|
| 70 mm |
4.35 kg / 9.58 lbs
1 198 Gs
|
0.65 kg / 1.44 lbs
652 g / 6.4 N
|
3.91 kg / 8.62 lbs
~0 Gs
|
| 80 mm |
2.62 kg / 5.78 lbs
931 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 90 mm |
1.63 kg / 3.59 lbs
734 Gs
|
0.24 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.23 lbs
~0 Gs
|
| 100 mm |
1.04 kg / 2.30 lbs
587 Gs
|
0.16 kg / 0.34 lbs
156 g / 1.5 N
|
0.94 kg / 2.07 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans (między magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia marnuje się w powietrzu.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Zasady BHP dla użytkowników magnesów
Niklowa powłoka a alergia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Kompas i GPS
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Uwaga na odpryski
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
