MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub pisz korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz wygląd magnesu sprawdzisz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Przedstawione dane stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
krytyczny poziom |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 144.20 lbs
65408.0 g / 641.7 N
|
krytyczny poziom |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 133.72 lbs
60652.7 g / 595.0 N
|
krytyczny poziom |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 123.35 lbs
55950.5 g / 548.9 N
|
krytyczny poziom |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 103.47 lbs
46935.3 g / 460.4 N
|
krytyczny poziom |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 62.40 lbs
28306.3 g / 277.7 N
|
krytyczny poziom |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 35.48 lbs
16095.6 g / 157.9 N
|
krytyczny poziom |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 19.76 lbs
8963.2 g / 87.9 N
|
mocny |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 6.31 lbs
2863.1 g / 28.1 N
|
mocny |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 0.89 lbs
402.4 g / 3.9 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 28.84 lbs
13082.0 g / 128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 24.67 lbs
11190.0 g / 109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 12.48 lbs
5662.0 g / 55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 1.26 lbs
572.0 g / 5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 46.36 lbs
21030.0 g / 206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 15.45 lbs
7010.0 g / 68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 77.27 lbs
35050.0 g / 343.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 5.15 lbs
2336.7 g / 22.9 N
|
| 1 mm |
|
5.84 kg / 12.88 lbs
5841.7 g / 57.3 N
|
| 2 mm |
|
11.68 kg / 25.76 lbs
11683.3 g / 114.6 N
|
| 3 mm |
|
17.53 kg / 38.64 lbs
17525.0 g / 171.9 N
|
| 5 mm |
|
29.21 kg / 64.39 lbs
29208.3 g / 286.5 N
|
| 10 mm |
|
58.42 kg / 128.79 lbs
58416.7 g / 573.1 N
|
| 11 mm |
|
64.26 kg / 141.67 lbs
64258.3 g / 630.4 N
|
| 12 mm |
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 151.14 lbs
68557.8 g / 672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 147.74 lbs
67015.6 g / 657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 144.34 lbs
65473.4 g / 642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 110.04 lbs
49911.2 g / 489.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
181.46 kg / 400.06 lbs
5 255 Gs
|
27.22 kg / 60.01 lbs
27220 g / 267.0 N
|
N/A |
| 1 mm |
175.47 kg / 386.84 lbs
7 615 Gs
|
26.32 kg / 58.03 lbs
26321 g / 258.2 N
|
157.92 kg / 348.16 lbs
~0 Gs
|
| 2 mm |
169.32 kg / 373.28 lbs
7 480 Gs
|
25.40 kg / 55.99 lbs
25398 g / 249.2 N
|
152.39 kg / 335.96 lbs
~0 Gs
|
| 3 mm |
163.16 kg / 359.70 lbs
7 343 Gs
|
24.47 kg / 53.96 lbs
24474 g / 240.1 N
|
146.84 kg / 323.73 lbs
~0 Gs
|
| 5 mm |
150.90 kg / 332.67 lbs
7 061 Gs
|
22.63 kg / 49.90 lbs
22634 g / 222.0 N
|
135.81 kg / 299.40 lbs
~0 Gs
|
| 10 mm |
121.50 kg / 267.86 lbs
6 336 Gs
|
18.22 kg / 40.18 lbs
18225 g / 178.8 N
|
109.35 kg / 241.07 lbs
~0 Gs
|
| 20 mm |
73.28 kg / 161.54 lbs
4 921 Gs
|
10.99 kg / 24.23 lbs
10991 g / 107.8 N
|
65.95 kg / 145.39 lbs
~0 Gs
|
| 50 mm |
12.99 kg / 28.63 lbs
2 071 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.76 lbs
~0 Gs
|
| 60 mm |
7.41 kg / 16.34 lbs
1 565 Gs
|
1.11 kg / 2.45 lbs
1112 g / 10.9 N
|
6.67 kg / 14.71 lbs
~0 Gs
|
| 70 mm |
4.35 kg / 9.58 lbs
1 198 Gs
|
0.65 kg / 1.44 lbs
652 g / 6.4 N
|
3.91 kg / 8.62 lbs
~0 Gs
|
| 80 mm |
2.62 kg / 5.78 lbs
931 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 90 mm |
1.63 kg / 3.59 lbs
734 Gs
|
0.24 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.23 lbs
~0 Gs
|
| 100 mm |
1.04 kg / 2.30 lbs
587 Gs
|
0.16 kg / 0.34 lbs
156 g / 1.5 N
|
0.94 kg / 2.07 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi jedynie ~1% (wg testów).
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Odstęp (między magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Smartfony i tablety
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Nośniki danych
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zakaz zabawy
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Alergia na nikiel
Część populacji ma uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
