MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie pisz przez
formularz
na naszej stronie.
Właściwości oraz kształt magnesów sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe informacje stanowią wynik symulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
krytyczny poziom |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 144.20 lbs
65408.0 g / 641.7 N
|
krytyczny poziom |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 133.72 lbs
60652.7 g / 595.0 N
|
krytyczny poziom |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 123.35 lbs
55950.5 g / 548.9 N
|
krytyczny poziom |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 103.47 lbs
46935.3 g / 460.4 N
|
krytyczny poziom |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 62.40 lbs
28306.3 g / 277.7 N
|
krytyczny poziom |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 35.48 lbs
16095.6 g / 157.9 N
|
krytyczny poziom |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 19.76 lbs
8963.2 g / 87.9 N
|
uwaga |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 6.31 lbs
2863.1 g / 28.1 N
|
uwaga |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 0.89 lbs
402.4 g / 3.9 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 28.84 lbs
13082.0 g / 128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 26.74 lbs
12130.0 g / 119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 24.67 lbs
11190.0 g / 109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 12.48 lbs
5662.0 g / 55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 1.26 lbs
572.0 g / 5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 46.36 lbs
21030.0 g / 206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 30.91 lbs
14020.0 g / 137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 15.45 lbs
7010.0 g / 68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 77.27 lbs
35050.0 g / 343.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 5.15 lbs
2336.7 g / 22.9 N
|
| 1 mm |
|
5.84 kg / 12.88 lbs
5841.7 g / 57.3 N
|
| 2 mm |
|
11.68 kg / 25.76 lbs
11683.3 g / 114.6 N
|
| 3 mm |
|
17.53 kg / 38.64 lbs
17525.0 g / 171.9 N
|
| 5 mm |
|
29.21 kg / 64.39 lbs
29208.3 g / 286.5 N
|
| 10 mm |
|
58.42 kg / 128.79 lbs
58416.7 g / 573.1 N
|
| 11 mm |
|
64.26 kg / 141.67 lbs
64258.3 g / 630.4 N
|
| 12 mm |
|
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 154.54 lbs
70100.0 g / 687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 151.14 lbs
68557.8 g / 672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 147.74 lbs
67015.6 g / 657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 144.34 lbs
65473.4 g / 642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 110.04 lbs
49911.2 g / 489.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
181.46 kg / 400.06 lbs
5 255 Gs
|
27.22 kg / 60.01 lbs
27220 g / 267.0 N
|
N/A |
| 1 mm |
175.47 kg / 386.84 lbs
7 615 Gs
|
26.32 kg / 58.03 lbs
26321 g / 258.2 N
|
157.92 kg / 348.16 lbs
~0 Gs
|
| 2 mm |
169.32 kg / 373.28 lbs
7 480 Gs
|
25.40 kg / 55.99 lbs
25398 g / 249.2 N
|
152.39 kg / 335.96 lbs
~0 Gs
|
| 3 mm |
163.16 kg / 359.70 lbs
7 343 Gs
|
24.47 kg / 53.96 lbs
24474 g / 240.1 N
|
146.84 kg / 323.73 lbs
~0 Gs
|
| 5 mm |
150.90 kg / 332.67 lbs
7 061 Gs
|
22.63 kg / 49.90 lbs
22634 g / 222.0 N
|
135.81 kg / 299.40 lbs
~0 Gs
|
| 10 mm |
121.50 kg / 267.86 lbs
6 336 Gs
|
18.22 kg / 40.18 lbs
18225 g / 178.8 N
|
109.35 kg / 241.07 lbs
~0 Gs
|
| 20 mm |
73.28 kg / 161.54 lbs
4 921 Gs
|
10.99 kg / 24.23 lbs
10991 g / 107.8 N
|
65.95 kg / 145.39 lbs
~0 Gs
|
| 50 mm |
12.99 kg / 28.63 lbs
2 071 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.76 lbs
~0 Gs
|
| 60 mm |
7.41 kg / 16.34 lbs
1 565 Gs
|
1.11 kg / 2.45 lbs
1112 g / 10.9 N
|
6.67 kg / 14.71 lbs
~0 Gs
|
| 70 mm |
4.35 kg / 9.58 lbs
1 198 Gs
|
0.65 kg / 1.44 lbs
652 g / 6.4 N
|
3.91 kg / 8.62 lbs
~0 Gs
|
| 80 mm |
2.62 kg / 5.78 lbs
931 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 90 mm |
1.63 kg / 3.59 lbs
734 Gs
|
0.24 kg / 0.54 lbs
245 g / 2.4 N
|
1.47 kg / 3.23 lbs
~0 Gs
|
| 100 mm |
1.04 kg / 2.30 lbs
587 Gs
|
0.16 kg / 0.34 lbs
156 g / 1.5 N
|
0.94 kg / 2.07 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, działającej jako element zamykający obwód
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans – obecność ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig wyznaczano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Niklowa powłoka a alergia
Część populacji ma alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może wywołać silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
Uszkodzenia ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Ostrożność wymagana
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
