MPL 12x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020118
GTIN/EAN: 5906301811244
Długość
12 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.45 kg / 33.88 N
Indukcja magnetyczna
340.59 mT / 3406 Gs
Powłoka
[NiCuNi] nikiel
1.697 ZŁ z VAT / szt. + cena za transport
1.380 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz gdzie kupić?
Dzwoń do nas
+48 22 499 98 98
lub daj znać za pomocą
formularz zapytania
w sekcji kontakt.
Parametry a także formę magnesów wyliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 12x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 12x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020118 |
| GTIN/EAN | 5906301811244 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 12 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.45 kg / 33.88 N |
| Indukcja magnetyczna ~ ? | 340.59 mT / 3406 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - dane
Przedstawione dane są wynik symulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
MPL 12x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
3.45 kg / 3450.0 g
33.8 N
|
średnie ryzyko |
| 1 mm |
2920 Gs
292.0 mT
|
2.54 kg / 2538.8 g
24.9 N
|
średnie ryzyko |
| 2 mm |
2399 Gs
239.9 mT
|
1.71 kg / 1713.7 g
16.8 N
|
bezpieczny |
| 3 mm |
1919 Gs
191.9 mT
|
1.10 kg / 1096.3 g
10.8 N
|
bezpieczny |
| 5 mm |
1190 Gs
119.0 mT
|
0.42 kg / 421.6 g
4.1 N
|
bezpieczny |
| 10 mm |
392 Gs
39.2 mT
|
0.05 kg / 45.7 g
0.4 N
|
bezpieczny |
| 15 mm |
162 Gs
16.2 mT
|
0.01 kg / 7.8 g
0.1 N
|
bezpieczny |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 1.9 g
0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 12x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 690.0 g
6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 508.0 g
5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 342.0 g
3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 220.0 g
2.2 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 12x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 1035.0 g
10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 690.0 g
6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 345.0 g
3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 1725.0 g
16.9 N
|
MPL 12x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 345.0 g
3.4 N
|
| 1 mm |
|
0.86 kg / 862.5 g
8.5 N
|
| 2 mm |
|
1.73 kg / 1725.0 g
16.9 N
|
| 5 mm |
|
3.45 kg / 3450.0 g
33.8 N
|
| 10 mm |
|
3.45 kg / 3450.0 g
33.8 N
|
MPL 12x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 3450.0 g
33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 3374.1 g
33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 3298.2 g
32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 3222.3 g
31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 2456.4 g
24.1 N
|
MPL 12x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
8.57 kg / 8573 g
84.1 N
4 915 Gs
|
N/A |
| 1 mm |
7.46 kg / 7455 g
73.1 N
6 349 Gs
|
6.71 kg / 6710 g
65.8 N
~0 Gs
|
| 2 mm |
6.31 kg / 6309 g
61.9 N
5 841 Gs
|
5.68 kg / 5678 g
55.7 N
~0 Gs
|
| 3 mm |
5.23 kg / 5228 g
51.3 N
5 317 Gs
|
4.71 kg / 4705 g
46.2 N
~0 Gs
|
| 5 mm |
3.42 kg / 3423 g
33.6 N
4 302 Gs
|
3.08 kg / 3081 g
30.2 N
~0 Gs
|
| 10 mm |
1.05 kg / 1048 g
10.3 N
2 380 Gs
|
0.94 kg / 943 g
9.3 N
~0 Gs
|
| 20 mm |
0.11 kg / 114 g
1.1 N
784 Gs
|
0.10 kg / 102 g
1.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
90 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 12x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 12x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.48 km/h
(8.74 m/s)
|
0.14 J | |
| 30 mm |
54.08 km/h
(15.02 m/s)
|
0.41 J | |
| 50 mm |
69.81 km/h
(19.39 m/s)
|
0.68 J | |
| 100 mm |
98.73 km/h
(27.42 m/s)
|
1.35 J |
MPL 12x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 12x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 295 Mx | 42.9 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
MPL 12x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.45 kg | Standard |
| Woda (dno rzeki) |
3.95 kg
(+0.50 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (pomiędzy magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część strumienia marnuje się w powietrzu.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Interferencja medyczna
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Alergia na nikiel
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Ochrona urządzeń
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
