MPL 12x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020118
GTIN/EAN: 5906301811244
Długość
12 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.45 kg / 33.88 N
Indukcja magnetyczna
340.59 mT / 3406 Gs
Powłoka
[NiCuNi] nikiel
1.697 ZŁ z VAT / szt. + cena za transport
1.380 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo daj znać poprzez
formularz
na stronie kontakt.
Siłę a także wygląd magnesów sprawdzisz dzięki naszemu
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Dane - MPL 12x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 12x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020118 |
| GTIN/EAN | 5906301811244 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 12 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.45 kg / 33.88 N |
| Indukcja magnetyczna ~ ? | 340.59 mT / 3406 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe dane stanowią wynik kalkulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 12x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
mocny |
| 1 mm |
2920 Gs
292.0 mT
|
2.54 kg / 5.60 lbs
2538.8 g / 24.9 N
|
mocny |
| 2 mm |
2399 Gs
239.9 mT
|
1.71 kg / 3.78 lbs
1713.7 g / 16.8 N
|
niskie ryzyko |
| 3 mm |
1919 Gs
191.9 mT
|
1.10 kg / 2.42 lbs
1096.3 g / 10.8 N
|
niskie ryzyko |
| 5 mm |
1190 Gs
119.0 mT
|
0.42 kg / 0.93 lbs
421.6 g / 4.1 N
|
niskie ryzyko |
| 10 mm |
392 Gs
39.2 mT
|
0.05 kg / 0.10 lbs
45.7 g / 0.4 N
|
niskie ryzyko |
| 15 mm |
162 Gs
16.2 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 12x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
508.0 g / 5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
342.0 g / 3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
220.0 g / 2.2 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 12x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 12x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 1 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 2 mm |
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
| 3 mm |
|
2.59 kg / 5.70 lbs
2587.5 g / 25.4 N
|
| 5 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 10 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 11 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 12 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 12x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 7.44 lbs
3374.1 g / 33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 7.27 lbs
3298.2 g / 32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 7.10 lbs
3222.3 g / 31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 5.42 lbs
2456.4 g / 24.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 12x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.57 kg / 18.90 lbs
4 915 Gs
|
1.29 kg / 2.84 lbs
1286 g / 12.6 N
|
N/A |
| 1 mm |
7.46 kg / 16.44 lbs
6 349 Gs
|
1.12 kg / 2.47 lbs
1118 g / 11.0 N
|
6.71 kg / 14.79 lbs
~0 Gs
|
| 2 mm |
6.31 kg / 13.91 lbs
5 841 Gs
|
0.95 kg / 2.09 lbs
946 g / 9.3 N
|
5.68 kg / 12.52 lbs
~0 Gs
|
| 3 mm |
5.23 kg / 11.53 lbs
5 317 Gs
|
0.78 kg / 1.73 lbs
784 g / 7.7 N
|
4.71 kg / 10.37 lbs
~0 Gs
|
| 5 mm |
3.42 kg / 7.55 lbs
4 302 Gs
|
0.51 kg / 1.13 lbs
513 g / 5.0 N
|
3.08 kg / 6.79 lbs
~0 Gs
|
| 10 mm |
1.05 kg / 2.31 lbs
2 380 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
784 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
90 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 12x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 12x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.48 km/h
(8.74 m/s)
|
0.14 J | |
| 30 mm |
54.08 km/h
(15.02 m/s)
|
0.41 J | |
| 50 mm |
69.81 km/h
(19.39 m/s)
|
0.68 J | |
| 100 mm |
98.73 km/h
(27.42 m/s)
|
1.35 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 12x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 12x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 295 Mx | 42.9 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 12x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.45 kg | Standard |
| Woda (dno rzeki) |
3.95 kg
(+0.50 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Tylko dla dorosłych
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Poważne obrażenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Elektronika precyzyjna
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Potężne pole
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
