MPL 13x10x5 / N35H - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020119
GTIN/EAN: 5906301811251
Długość
13 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
4.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.03 kg / 39.54 N
Indukcja magnetyczna
369.32 mT / 3693 Gs
Powłoka
[NiCuNi] nikiel
2.58 ZŁ z VAT / szt. + cena za transport
2.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz przez
formularz zapytania
na naszej stronie.
Właściwości oraz wygląd magnesu neodymowego sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 13x10x5 / N35H - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 13x10x5 / N35H - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020119 |
| GTIN/EAN | 5906301811251 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 13 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 4.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.03 kg / 39.54 N |
| Indukcja magnetyczna ~ ? | 369.32 mT / 3693 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N35H
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 11.7-12.1 | kGs |
| remanencja Br [min. - maks.] ? | 1170-1210 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 17 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 1353 | kA/m |
| gęstość energii [min. - maks.] ? | 33-35 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 263-279 | BH max KJ/m |
| max. temperatura ? | ≤ 120 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione informacje są bezpośredni efekt kalkulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 13x10x5 / N35H
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3691 Gs
369.1 mT
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
uwaga |
| 1 mm |
3152 Gs
315.2 mT
|
2.94 kg / 6.48 lbs
2938.4 g / 28.8 N
|
uwaga |
| 2 mm |
2595 Gs
259.5 mT
|
1.99 kg / 4.39 lbs
1991.8 g / 19.5 N
|
słaby uchwyt |
| 3 mm |
2089 Gs
208.9 mT
|
1.29 kg / 2.85 lbs
1291.2 g / 12.7 N
|
słaby uchwyt |
| 5 mm |
1321 Gs
132.1 mT
|
0.52 kg / 1.14 lbs
516.1 g / 5.1 N
|
słaby uchwyt |
| 10 mm |
455 Gs
45.5 mT
|
0.06 kg / 0.14 lbs
61.2 g / 0.6 N
|
słaby uchwyt |
| 15 mm |
193 Gs
19.3 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 13x10x5 / N35H
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
| 1 mm | Stal (~0.2) |
0.59 kg / 1.30 lbs
588.0 g / 5.8 N
|
| 2 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
398.0 g / 3.9 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
258.0 g / 2.5 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 13x10x5 / N35H
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.21 kg / 2.67 lbs
1209.0 g / 11.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.40 kg / 0.89 lbs
403.0 g / 4.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.02 kg / 4.44 lbs
2015.0 g / 19.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 13x10x5 / N35H
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.40 kg / 0.89 lbs
403.0 g / 4.0 N
|
| 1 mm |
|
1.01 kg / 2.22 lbs
1007.5 g / 9.9 N
|
| 2 mm |
|
2.02 kg / 4.44 lbs
2015.0 g / 19.8 N
|
| 3 mm |
|
3.02 kg / 6.66 lbs
3022.5 g / 29.7 N
|
| 5 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 10 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 11 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
| 12 mm |
|
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 13x10x5 / N35H
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.03 kg / 8.88 lbs
4030.0 g / 39.5 N
|
OK |
| 80 °C | -6.6% |
3.76 kg / 8.30 lbs
3764.0 g / 36.9 N
|
|
| 120 °C | -11.0% |
3.59 kg / 7.91 lbs
3586.7 g / 35.2 N
|
|
| 140 °C | -33.2% |
2.69 kg / 5.93 lbs
2692.0 g / 26.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 13x10x5 / N35H
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.92 kg / 24.08 lbs
5 009 Gs
|
1.64 kg / 3.61 lbs
1638 g / 16.1 N
|
N/A |
| 1 mm |
9.43 kg / 20.80 lbs
6 862 Gs
|
1.42 kg / 3.12 lbs
1415 g / 13.9 N
|
8.49 kg / 18.72 lbs
~0 Gs
|
| 2 mm |
7.96 kg / 17.55 lbs
6 304 Gs
|
1.19 kg / 2.63 lbs
1194 g / 11.7 N
|
7.17 kg / 15.80 lbs
~0 Gs
|
| 3 mm |
6.60 kg / 14.56 lbs
5 740 Gs
|
0.99 kg / 2.18 lbs
990 g / 9.7 N
|
5.94 kg / 13.10 lbs
~0 Gs
|
| 5 mm |
4.36 kg / 9.62 lbs
4 667 Gs
|
0.65 kg / 1.44 lbs
655 g / 6.4 N
|
3.93 kg / 8.66 lbs
~0 Gs
|
| 10 mm |
1.40 kg / 3.08 lbs
2 642 Gs
|
0.21 kg / 0.46 lbs
210 g / 2.1 N
|
1.26 kg / 2.78 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.37 lbs
910 Gs
|
0.02 kg / 0.05 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
68 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 13x10x5 / N35H
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 13x10x5 / N35H
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.26 km/h
(8.13 m/s)
|
0.16 J | |
| 30 mm |
50.20 km/h
(13.94 m/s)
|
0.47 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.79 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.58 J |
Tabela 9: Odporność na korozję
MPL 13x10x5 / N35H
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 13x10x5 / N35H
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 919 Mx | 49.2 µWb |
| Współczynnik Pc | 0.49 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 13x10x5 / N35H
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.03 kg | Standard |
| Woda (dno rzeki) |
4.61 kg
(+0.58 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z wykorzystaniem podłoża ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- o grubości przynajmniej 10 mm
- z płaszczyzną idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Samozapłon
Pył powstający podczas szlifowania magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie dawać dzieciom
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Zagrożenie fizyczne
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Pole magnetyczne a elektronika
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
