MPL 13x10x5 / N35H - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020119
GTIN/EAN: 5906301811251
Długość
13 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
4.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.03 kg / 39.54 N
Indukcja magnetyczna
369.32 mT / 3693 Gs
Powłoka
[NiCuNi] nikiel
2.58 ZŁ z VAT / szt. + cena za transport
2.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie napisz korzystając z
formularz kontaktowy
przez naszą stronę.
Właściwości oraz kształt magnesu neodymowego wyliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MPL 13x10x5 / N35H - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 13x10x5 / N35H - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020119 |
| GTIN/EAN | 5906301811251 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 13 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 4.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.03 kg / 39.54 N |
| Indukcja magnetyczna ~ ? | 369.32 mT / 3693 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N35H
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 11.7-12.1 | kGs |
| remanencja Br [min. - maks.] ? | 1170-1210 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 17 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 1353 | kA/m |
| gęstość energii [min. - maks.] ? | 33-35 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 263-279 | BH max KJ/m |
| max. temperatura ? | ≤ 120 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 13x10x5 / N35H
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3691 Gs
369.1 mT
|
4.03 kg / 4030.0 g
39.5 N
|
średnie ryzyko |
| 1 mm |
3152 Gs
315.2 mT
|
2.94 kg / 2938.4 g
28.8 N
|
średnie ryzyko |
| 2 mm |
2595 Gs
259.5 mT
|
1.99 kg / 1991.8 g
19.5 N
|
słaby uchwyt |
| 3 mm |
2089 Gs
208.9 mT
|
1.29 kg / 1291.2 g
12.7 N
|
słaby uchwyt |
| 5 mm |
1321 Gs
132.1 mT
|
0.52 kg / 516.1 g
5.1 N
|
słaby uchwyt |
| 10 mm |
455 Gs
45.5 mT
|
0.06 kg / 61.2 g
0.6 N
|
słaby uchwyt |
| 15 mm |
193 Gs
19.3 mT
|
0.01 kg / 11.1 g
0.1 N
|
słaby uchwyt |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 2.8 g
0.0 N
|
słaby uchwyt |
| 30 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 13x10x5 / N35H
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.81 kg / 806.0 g
7.9 N
|
| 1 mm | Stal (~0.2) |
0.59 kg / 588.0 g
5.8 N
|
| 2 mm | Stal (~0.2) |
0.40 kg / 398.0 g
3.9 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 258.0 g
2.5 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 13x10x5 / N35H
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.21 kg / 1209.0 g
11.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.81 kg / 806.0 g
7.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.40 kg / 403.0 g
4.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.02 kg / 2015.0 g
19.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 13x10x5 / N35H
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.40 kg / 403.0 g
4.0 N
|
| 1 mm |
|
1.01 kg / 1007.5 g
9.9 N
|
| 2 mm |
|
2.02 kg / 2015.0 g
19.8 N
|
| 5 mm |
|
4.03 kg / 4030.0 g
39.5 N
|
| 10 mm |
|
4.03 kg / 4030.0 g
39.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 13x10x5 / N35H
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.03 kg / 4030.0 g
39.5 N
|
OK |
| 80 °C | -6.6% |
3.76 kg / 3764.0 g
36.9 N
|
|
| 120 °C | -11.0% |
3.59 kg / 3586.7 g
35.2 N
|
|
| 140 °C | -33.2% |
2.69 kg / 2692.0 g
26.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 13x10x5 / N35H
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
10.92 kg / 10920 g
107.1 N
5 009 Gs
|
N/A |
| 1 mm |
9.43 kg / 9435 g
92.6 N
6 862 Gs
|
8.49 kg / 8491 g
83.3 N
~0 Gs
|
| 2 mm |
7.96 kg / 7962 g
78.1 N
6 304 Gs
|
7.17 kg / 7166 g
70.3 N
~0 Gs
|
| 3 mm |
6.60 kg / 6603 g
64.8 N
5 740 Gs
|
5.94 kg / 5942 g
58.3 N
~0 Gs
|
| 5 mm |
4.36 kg / 4363 g
42.8 N
4 667 Gs
|
3.93 kg / 3927 g
38.5 N
~0 Gs
|
| 10 mm |
1.40 kg / 1399 g
13.7 N
2 642 Gs
|
1.26 kg / 1259 g
12.3 N
~0 Gs
|
| 20 mm |
0.17 kg / 166 g
1.6 N
910 Gs
|
0.15 kg / 149 g
1.5 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
110 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 13x10x5 / N35H
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 13x10x5 / N35H
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.26 km/h
(8.13 m/s)
|
0.16 J | |
| 30 mm |
50.20 km/h
(13.94 m/s)
|
0.47 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.79 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 13x10x5 / N35H
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 13x10x5 / N35H
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 919 Mx | 49.2 µWb |
| Współczynnik Pc | 0.49 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 13x10x5 / N35H
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.03 kg | Standard |
| Woda (dno rzeki) |
4.61 kg
(+0.58 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi tylko ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (między magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża udźwig.
Bezpieczna praca z magnesami neodymowymi
Uwaga: zadławienie
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Temperatura pracy
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Siła neodymu
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Wpływ na smartfony
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Bezpieczny dystans
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
