MPL 40x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020158
GTIN/EAN: 5906301811640
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.62 kg / 241.53 N
Indukcja magnetyczna
349.60 mT / 3496 Gs
Powłoka
[NiCuNi] nikiel
31.00 ZŁ z VAT / szt. + cena za transport
25.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz korzystając z
formularz
na naszej stronie.
Moc oraz kształt elementów magnetycznych zobaczysz w naszym
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MPL 40x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020158 |
| GTIN/EAN | 5906301811640 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.62 kg / 241.53 N |
| Indukcja magnetyczna ~ ? | 349.60 mT / 3496 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Niniejsze informacje są rezultat kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 40x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3495 Gs
349.5 mT
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
niebezpieczny! |
| 1 mm |
3272 Gs
327.2 mT
|
21.58 kg / 47.57 lbs
21578.0 g / 211.7 N
|
niebezpieczny! |
| 2 mm |
3035 Gs
303.5 mT
|
18.56 kg / 40.92 lbs
18559.3 g / 182.1 N
|
niebezpieczny! |
| 3 mm |
2794 Gs
279.4 mT
|
15.73 kg / 34.69 lbs
15733.0 g / 154.3 N
|
niebezpieczny! |
| 5 mm |
2332 Gs
233.2 mT
|
10.96 kg / 24.16 lbs
10959.2 g / 107.5 N
|
niebezpieczny! |
| 10 mm |
1433 Gs
143.3 mT
|
4.14 kg / 9.12 lbs
4136.4 g / 40.6 N
|
średnie ryzyko |
| 15 mm |
891 Gs
89.1 mT
|
1.60 kg / 3.52 lbs
1598.7 g / 15.7 N
|
bezpieczny |
| 20 mm |
574 Gs
57.4 mT
|
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
bezpieczny |
| 30 mm |
267 Gs
26.7 mT
|
0.14 kg / 0.32 lbs
143.7 g / 1.4 N
|
bezpieczny |
| 50 mm |
82 Gs
8.2 mT
|
0.01 kg / 0.03 lbs
13.7 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 40x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| 1 mm | Stal (~0.2) |
4.32 kg / 9.52 lbs
4316.0 g / 42.3 N
|
| 2 mm | Stal (~0.2) |
3.71 kg / 8.18 lbs
3712.0 g / 36.4 N
|
| 3 mm | Stal (~0.2) |
3.15 kg / 6.94 lbs
3146.0 g / 30.9 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.83 lbs
2192.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 15 mm | Stal (~0.2) |
0.32 kg / 0.71 lbs
320.0 g / 3.1 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 40x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.39 kg / 16.28 lbs
7386.0 g / 72.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.92 kg / 10.86 lbs
4924.0 g / 48.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.46 kg / 5.43 lbs
2462.0 g / 24.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.31 kg / 27.14 lbs
12310.0 g / 120.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 40x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.23 kg / 2.71 lbs
1231.0 g / 12.1 N
|
| 1 mm |
|
3.08 kg / 6.78 lbs
3077.5 g / 30.2 N
|
| 2 mm |
|
6.16 kg / 13.57 lbs
6155.0 g / 60.4 N
|
| 3 mm |
|
9.23 kg / 20.35 lbs
9232.5 g / 90.6 N
|
| 5 mm |
|
15.39 kg / 33.92 lbs
15387.5 g / 151.0 N
|
| 10 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 11 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
| 12 mm |
|
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 40x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.62 kg / 54.28 lbs
24620.0 g / 241.5 N
|
OK |
| 40 °C | -2.2% |
24.08 kg / 53.08 lbs
24078.4 g / 236.2 N
|
OK |
| 60 °C | -4.4% |
23.54 kg / 51.89 lbs
23536.7 g / 230.9 N
|
|
| 80 °C | -6.6% |
23.00 kg / 50.70 lbs
22995.1 g / 225.6 N
|
|
| 100 °C | -28.8% |
17.53 kg / 38.65 lbs
17529.4 g / 172.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.25 kg / 132.83 lbs
4 926 Gs
|
9.04 kg / 19.93 lbs
9038 g / 88.7 N
|
N/A |
| 1 mm |
56.58 kg / 124.73 lbs
6 774 Gs
|
8.49 kg / 18.71 lbs
8487 g / 83.3 N
|
50.92 kg / 112.26 lbs
~0 Gs
|
| 2 mm |
52.81 kg / 116.42 lbs
6 544 Gs
|
7.92 kg / 17.46 lbs
7921 g / 77.7 N
|
47.53 kg / 104.78 lbs
~0 Gs
|
| 3 mm |
49.07 kg / 108.19 lbs
6 309 Gs
|
7.36 kg / 16.23 lbs
7361 g / 72.2 N
|
44.17 kg / 97.37 lbs
~0 Gs
|
| 5 mm |
41.89 kg / 92.34 lbs
5 828 Gs
|
6.28 kg / 13.85 lbs
6283 g / 61.6 N
|
37.70 kg / 83.11 lbs
~0 Gs
|
| 10 mm |
26.82 kg / 59.13 lbs
4 664 Gs
|
4.02 kg / 8.87 lbs
4023 g / 39.5 N
|
24.14 kg / 53.22 lbs
~0 Gs
|
| 20 mm |
10.12 kg / 22.32 lbs
2 865 Gs
|
1.52 kg / 3.35 lbs
1518 g / 14.9 N
|
9.11 kg / 20.09 lbs
~0 Gs
|
| 50 mm |
0.73 kg / 1.61 lbs
769 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 60 mm |
0.35 kg / 0.78 lbs
534 Gs
|
0.05 kg / 0.12 lbs
53 g / 0.5 N
|
0.32 kg / 0.70 lbs
~0 Gs
|
| 70 mm |
0.18 kg / 0.40 lbs
383 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
| 80 mm |
0.10 kg / 0.22 lbs
282 Gs
|
0.01 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 90 mm |
0.06 kg / 0.12 lbs
214 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
165 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 40x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.47 km/h
(6.24 m/s)
|
1.17 J | |
| 30 mm |
35.51 km/h
(9.86 m/s)
|
2.92 J | |
| 50 mm |
45.70 km/h
(12.69 m/s)
|
4.83 J | |
| 100 mm |
64.60 km/h
(17.95 m/s)
|
9.66 J |
Tabela 9: Odporność na korozję
MPL 40x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 28 125 Mx | 281.2 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.62 kg | Standard |
| Woda (dno rzeki) |
28.19 kg
(+3.57 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Determinanty praktycznego udźwigu magnesu
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
BHP przy magnesach
Elektronika precyzyjna
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Tylko dla dorosłych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Niklowa powłoka a alergia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Interferencja medyczna
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
