MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020117
GTIN/EAN: 5906301811237
Długość
12.5 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.84 kg / 47.51 N
Indukcja magnetyczna
360.91 mT / 3609 Gs
Powłoka
[NiCuNi] nikiel
2.83 ZŁ z VAT / szt. + cena za transport
2.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Dzwoń do nas
+48 22 499 98 98
albo pisz przez
formularz zapytania
na stronie kontaktowej.
Masę oraz formę magnesu zobaczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020117 |
| GTIN/EAN | 5906301811237 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 12.5 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.84 kg / 47.51 N |
| Indukcja magnetyczna ~ ? | 360.91 mT / 3609 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - parametry techniczne
Przedstawione dane stanowią bezpośredni efekt analizy fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3608 Gs
360.8 mT
|
4.84 kg / 4840.0 g
47.5 N
|
uwaga |
| 1 mm |
3156 Gs
315.6 mT
|
3.70 kg / 3704.2 g
36.3 N
|
uwaga |
| 2 mm |
2671 Gs
267.1 mT
|
2.65 kg / 2653.8 g
26.0 N
|
uwaga |
| 3 mm |
2211 Gs
221.1 mT
|
1.82 kg / 1817.7 g
17.8 N
|
bezpieczny |
| 5 mm |
1464 Gs
146.4 mT
|
0.80 kg / 797.6 g
7.8 N
|
bezpieczny |
| 10 mm |
538 Gs
53.8 mT
|
0.11 kg / 107.6 g
1.1 N
|
bezpieczny |
| 15 mm |
234 Gs
23.4 mT
|
0.02 kg / 20.4 g
0.2 N
|
bezpieczny |
| 20 mm |
119 Gs
11.9 mT
|
0.01 kg / 5.3 g
0.1 N
|
bezpieczny |
| 30 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 968.0 g
9.5 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 740.0 g
7.3 N
|
| 2 mm | Stal (~0.2) |
0.53 kg / 530.0 g
5.2 N
|
| 3 mm | Stal (~0.2) |
0.36 kg / 364.0 g
3.6 N
|
| 5 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 12.5x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 1452.0 g
14.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 968.0 g
9.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 484.0 g
4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 2420.0 g
23.7 N
|
MPL 12.5x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 484.0 g
4.7 N
|
| 1 mm |
|
1.21 kg / 1210.0 g
11.9 N
|
| 2 mm |
|
2.42 kg / 2420.0 g
23.7 N
|
| 5 mm |
|
4.84 kg / 4840.0 g
47.5 N
|
| 10 mm |
|
4.84 kg / 4840.0 g
47.5 N
|
MPL 12.5x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.84 kg / 4840.0 g
47.5 N
|
OK |
| 40 °C | -2.2% |
4.73 kg / 4733.5 g
46.4 N
|
OK |
| 60 °C | -4.4% |
4.63 kg / 4627.0 g
45.4 N
|
|
| 80 °C | -6.6% |
4.52 kg / 4520.6 g
44.3 N
|
|
| 100 °C | -28.8% |
3.45 kg / 3446.1 g
33.8 N
|
MPL 12.5x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.54 kg / 12536 g
123.0 N
5 069 Gs
|
N/A |
| 1 mm |
11.08 kg / 11080 g
108.7 N
6 783 Gs
|
9.97 kg / 9972 g
97.8 N
~0 Gs
|
| 2 mm |
9.59 kg / 9594 g
94.1 N
6 312 Gs
|
8.63 kg / 8635 g
84.7 N
~0 Gs
|
| 3 mm |
8.18 kg / 8176 g
80.2 N
5 827 Gs
|
7.36 kg / 7359 g
72.2 N
~0 Gs
|
| 5 mm |
5.71 kg / 5714 g
56.1 N
4 871 Gs
|
5.14 kg / 5143 g
50.5 N
~0 Gs
|
| 10 mm |
2.07 kg / 2066 g
20.3 N
2 929 Gs
|
1.86 kg / 1859 g
18.2 N
~0 Gs
|
| 20 mm |
0.28 kg / 279 g
2.7 N
1 076 Gs
|
0.25 kg / 251 g
2.5 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
136 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 12.5x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 12.5x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.38 km/h
(8.16 m/s)
|
0.20 J | |
| 30 mm |
50.21 km/h
(13.95 m/s)
|
0.57 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.95 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.90 J |
MPL 12.5x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 12.5x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 874 Mx | 58.7 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
MPL 12.5x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.84 kg | Standard |
| Woda (dno rzeki) |
5.54 kg
(+0.70 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z użyciem płyty ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Nie dawać dzieciom
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Ochrona oczu
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Ostrzeżenie dla alergików
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Smartfony i tablety
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
