MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030451
GTIN/EAN: 5906301812357
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
1.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.77 kg / 7.50 N
Indukcja magnetyczna
475.16 mT / 4752 Gs
Powłoka
[NiCuNi] nikiel
0.344 ZŁ z VAT / szt. + cena za transport
0.280 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie pisz za pomocą
formularz kontaktowy
w sekcji kontakt.
Parametry i budowę elementów magnetycznych testujesz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030451 |
| GTIN/EAN | 5906301812357 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 1.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.77 kg / 7.50 N |
| Indukcja magnetyczna ~ ? | 475.16 mT / 4752 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią rezultat analizy inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 5x1.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6157 Gs
615.7 mT
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
słaby uchwyt |
| 1 mm |
3880 Gs
388.0 mT
|
0.31 kg / 0.67 lbs
305.8 g / 3.0 N
|
słaby uchwyt |
| 2 mm |
2310 Gs
231.0 mT
|
0.11 kg / 0.24 lbs
108.4 g / 1.1 N
|
słaby uchwyt |
| 3 mm |
1422 Gs
142.2 mT
|
0.04 kg / 0.09 lbs
41.0 g / 0.4 N
|
słaby uchwyt |
| 5 mm |
641 Gs
64.1 mT
|
0.01 kg / 0.02 lbs
8.3 g / 0.1 N
|
słaby uchwyt |
| 10 mm |
174 Gs
17.4 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 5x1.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 5x1.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 5x1.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| 1 mm |
|
0.19 kg / 0.42 lbs
192.5 g / 1.9 N
|
| 2 mm |
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
| 3 mm |
|
0.58 kg / 1.27 lbs
577.5 g / 5.7 N
|
| 5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 10 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 11 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 12 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 5x1.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 1.66 lbs
753.1 g / 7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 1.62 lbs
736.1 g / 7.2 N
|
OK |
| 80 °C | -6.6% |
0.72 kg / 1.59 lbs
719.2 g / 7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 1.21 lbs
548.2 g / 5.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 5x1.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.50 kg / 5.50 lbs
6 171 Gs
|
0.37 kg / 0.83 lbs
374 g / 3.7 N
|
N/A |
| 1 mm |
1.62 kg / 3.58 lbs
9 932 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
1.46 kg / 3.22 lbs
~0 Gs
|
| 2 mm |
0.99 kg / 2.19 lbs
7 760 Gs
|
0.15 kg / 0.33 lbs
149 g / 1.5 N
|
0.89 kg / 1.97 lbs
~0 Gs
|
| 3 mm |
0.59 kg / 1.30 lbs
5 986 Gs
|
0.09 kg / 0.20 lbs
88 g / 0.9 N
|
0.53 kg / 1.17 lbs
~0 Gs
|
| 5 mm |
0.21 kg / 0.47 lbs
3 600 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 10 mm |
0.03 kg / 0.06 lbs
1 281 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
349 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
50 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 5x1.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 5x1.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
44.27 km/h
(12.30 m/s)
|
0.03 J | |
| 30 mm |
76.64 km/h
(21.29 m/s)
|
0.09 J | |
| 50 mm |
98.94 km/h
(27.48 m/s)
|
0.15 J | |
| 100 mm |
139.93 km/h
(38.87 m/s)
|
0.30 J |
Tabela 9: Odporność na korozję
MP 5x1.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 5x1.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 811 Mx | 8.1 µWb |
| Współczynnik Pc | 1.66 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 5x1.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.77 kg | Standard |
| Woda (dno rzeki) |
0.88 kg
(+0.11 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.66
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z użyciem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Zagrożenie życia
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Siła neodymu
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Urazy ciała
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Ochrona urządzeń
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
