MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030451
GTIN/EAN: 5906301812357
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
1.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.77 kg / 7.50 N
Indukcja magnetyczna
475.16 mT / 4752 Gs
Powłoka
[NiCuNi] nikiel
0.344 ZŁ z VAT / szt. + cena za transport
0.280 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub zostaw wiadomość za pomocą
nasz formularz online
na stronie kontaktowej.
Masę i formę magnesów wyliczysz w naszym
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 5x1.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030451 |
| GTIN/EAN | 5906301812357 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 1.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.77 kg / 7.50 N |
| Indukcja magnetyczna ~ ? | 475.16 mT / 4752 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Przedstawione informacje stanowią rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 5x1.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6157 Gs
615.7 mT
|
0.77 kg / 770.0 g
7.6 N
|
słaby uchwyt |
| 1 mm |
3880 Gs
388.0 mT
|
0.31 kg / 305.8 g
3.0 N
|
słaby uchwyt |
| 2 mm |
2310 Gs
231.0 mT
|
0.11 kg / 108.4 g
1.1 N
|
słaby uchwyt |
| 3 mm |
1422 Gs
142.2 mT
|
0.04 kg / 41.0 g
0.4 N
|
słaby uchwyt |
| 5 mm |
641 Gs
64.1 mT
|
0.01 kg / 8.3 g
0.1 N
|
słaby uchwyt |
| 10 mm |
174 Gs
17.4 mT
|
0.00 kg / 0.6 g
0.0 N
|
słaby uchwyt |
| 15 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 5x1.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 154.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 5x1.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 231.0 g
2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 154.0 g
1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 77.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 385.0 g
3.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 5x1.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 77.0 g
0.8 N
|
| 1 mm |
|
0.19 kg / 192.5 g
1.9 N
|
| 2 mm |
|
0.39 kg / 385.0 g
3.8 N
|
| 5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 10 mm |
|
0.77 kg / 770.0 g
7.6 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MP 5x1.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 770.0 g
7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 753.1 g
7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 736.1 g
7.2 N
|
OK |
| 80 °C | -6.6% |
0.72 kg / 719.2 g
7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 548.2 g
5.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 5x1.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.50 kg / 2496 g
24.5 N
6 171 Gs
|
N/A |
| 1 mm |
1.62 kg / 1624 g
15.9 N
9 932 Gs
|
1.46 kg / 1462 g
14.3 N
~0 Gs
|
| 2 mm |
0.99 kg / 991 g
9.7 N
7 760 Gs
|
0.89 kg / 892 g
8.8 N
~0 Gs
|
| 3 mm |
0.59 kg / 590 g
5.8 N
5 986 Gs
|
0.53 kg / 531 g
5.2 N
~0 Gs
|
| 5 mm |
0.21 kg / 213 g
2.1 N
3 600 Gs
|
0.19 kg / 192 g
1.9 N
~0 Gs
|
| 10 mm |
0.03 kg / 27 g
0.3 N
1 281 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
349 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
50 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 5x1.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 5x1.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
44.27 km/h
(12.30 m/s)
|
0.03 J | |
| 30 mm |
76.64 km/h
(21.29 m/s)
|
0.09 J | |
| 50 mm |
98.94 km/h
(27.48 m/s)
|
0.15 J | |
| 100 mm |
139.93 km/h
(38.87 m/s)
|
0.30 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 5x1.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 5x1.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 811 Mx | 8.1 µWb |
| Współczynnik Pc | 1.66 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 5x1.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.77 kg | Standard |
| Woda (dno rzeki) |
0.88 kg
(+0.11 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.66
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z użyciem podłoża ze miękkiej stali, pełniącej rolę zwora magnetyczna
- której grubość to min. 10 mm
- o szlifowanej powierzchni styku
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ryzyko połknięcia
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Potężne pole
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Obróbka mechaniczna
Pył generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Dla uczulonych
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
