MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030450
GTIN/EAN: 5906301812340
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
66.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.02 kg / 186.54 N
Indukcja magnetyczna
525.50 mT / 5255 Gs
Powłoka
[NiCuNi] nikiel
41.71 ZŁ z VAT / szt. + cena za transport
33.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń i zapytaj
+48 22 499 98 98
albo pisz za pomocą
nasz formularz online
na stronie kontaktowej.
Masę oraz budowę magnesu sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030450 |
| GTIN/EAN | 5906301812340 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 66.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.02 kg / 186.54 N |
| Indukcja magnetyczna ~ ? | 525.50 mT / 5255 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - raport
Niniejsze informacje są wynik kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
MP 25x8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
19.02 kg / 19020.0 g
186.6 N
|
krytyczny poziom |
| 1 mm |
5310 Gs
531.0 mT
|
16.07 kg / 16067.7 g
157.6 N
|
krytyczny poziom |
| 2 mm |
4846 Gs
484.6 mT
|
13.38 kg / 13380.1 g
131.3 N
|
krytyczny poziom |
| 3 mm |
4397 Gs
439.7 mT
|
11.02 kg / 11019.3 g
108.1 N
|
krytyczny poziom |
| 5 mm |
3576 Gs
357.6 mT
|
7.29 kg / 7287.1 g
71.5 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
2.45 kg / 2448.1 g
24.0 N
|
średnie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.86 kg / 863.8 g
8.5 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.34 kg / 340.1 g
3.3 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.07 kg / 72.1 g
0.7 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 7.5 g
0.1 N
|
niskie ryzyko |
MP 25x8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.80 kg / 3804.0 g
37.3 N
|
| 1 mm | Stal (~0.2) |
3.21 kg / 3214.0 g
31.5 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 2676.0 g
26.3 N
|
| 3 mm | Stal (~0.2) |
2.20 kg / 2204.0 g
21.6 N
|
| 5 mm | Stal (~0.2) |
1.46 kg / 1458.0 g
14.3 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 490.0 g
4.8 N
|
| 15 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 68.0 g
0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MP 25x8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.71 kg / 5706.0 g
56.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.80 kg / 3804.0 g
37.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.90 kg / 1902.0 g
18.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.51 kg / 9510.0 g
93.3 N
|
MP 25x8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 951.0 g
9.3 N
|
| 1 mm |
|
2.38 kg / 2377.5 g
23.3 N
|
| 2 mm |
|
4.76 kg / 4755.0 g
46.6 N
|
| 5 mm |
|
11.89 kg / 11887.5 g
116.6 N
|
| 10 mm |
|
19.02 kg / 19020.0 g
186.6 N
|
MP 25x8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.02 kg / 19020.0 g
186.6 N
|
OK |
| 40 °C | -2.2% |
18.60 kg / 18601.6 g
182.5 N
|
OK |
| 60 °C | -4.4% |
18.18 kg / 18183.1 g
178.4 N
|
OK |
| 80 °C | -6.6% |
17.76 kg / 17764.7 g
174.3 N
|
|
| 100 °C | -28.8% |
13.54 kg / 13542.2 g
132.8 N
|
MP 25x8x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
30.91 kg / 30909 g
303.2 N
6 082 Gs
|
N/A |
| 1 mm |
28.48 kg / 28480 g
279.4 N
11 091 Gs
|
25.63 kg / 25632 g
251.5 N
~0 Gs
|
| 2 mm |
26.11 kg / 26112 g
256.2 N
10 620 Gs
|
23.50 kg / 23500 g
230.5 N
~0 Gs
|
| 3 mm |
23.86 kg / 23863 g
234.1 N
10 153 Gs
|
21.48 kg / 21477 g
210.7 N
~0 Gs
|
| 5 mm |
19.76 kg / 19758 g
193.8 N
9 238 Gs
|
17.78 kg / 17782 g
174.4 N
~0 Gs
|
| 10 mm |
11.84 kg / 11842 g
116.2 N
7 152 Gs
|
10.66 kg / 10658 g
104.6 N
~0 Gs
|
| 20 mm |
3.98 kg / 3978 g
39.0 N
4 145 Gs
|
3.58 kg / 3581 g
35.1 N
~0 Gs
|
| 50 mm |
0.24 kg / 243 g
2.4 N
1 024 Gs
|
0.22 kg / 219 g
2.1 N
~0 Gs
|
MP 25x8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.43 km/h
(5.12 m/s)
|
0.87 J | |
| 30 mm |
29.70 km/h
(8.25 m/s)
|
2.25 J | |
| 50 mm |
38.27 km/h
(10.63 m/s)
|
3.73 J | |
| 100 mm |
54.10 km/h
(15.03 m/s)
|
7.46 J |
MP 25x8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 10 108 Mx | 101.1 µWb |
| Współczynnik Pc | 1.25 | Wysoki (Stabilny) |
MP 25x8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.02 kg | Standard |
| Woda (dno rzeki) |
21.78 kg
(+2.76 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- z wykorzystaniem podłoża ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (brak farby)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (między magnesem a blachą), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Ryzyko złamań
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Bezpieczna praca
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Nie dawać dzieciom
Magnesy neodymowe nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
