MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030450
GTIN/EAN: 5906301812340
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
66.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.02 kg / 186.54 N
Indukcja magnetyczna
525.50 mT / 5255 Gs
Powłoka
[NiCuNi] nikiel
41.71 ZŁ z VAT / szt. + cena za transport
33.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo pisz poprzez
nasz formularz online
na stronie kontaktowej.
Właściwości i budowę magnesu neodymowego zobaczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry - MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030450 |
| GTIN/EAN | 5906301812340 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 66.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.02 kg / 186.54 N |
| Indukcja magnetyczna ~ ? | 525.50 mT / 5255 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Poniższe wartości stanowią rezultat symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 25x8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
19.02 kg / 41.93 lbs
19020.0 g / 186.6 N
|
krytyczny poziom |
| 1 mm |
5310 Gs
531.0 mT
|
16.07 kg / 35.42 lbs
16067.7 g / 157.6 N
|
krytyczny poziom |
| 2 mm |
4846 Gs
484.6 mT
|
13.38 kg / 29.50 lbs
13380.1 g / 131.3 N
|
krytyczny poziom |
| 3 mm |
4397 Gs
439.7 mT
|
11.02 kg / 24.29 lbs
11019.3 g / 108.1 N
|
krytyczny poziom |
| 5 mm |
3576 Gs
357.6 mT
|
7.29 kg / 16.07 lbs
7287.1 g / 71.5 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
2.45 kg / 5.40 lbs
2448.1 g / 24.0 N
|
uwaga |
| 15 mm |
1231 Gs
123.1 mT
|
0.86 kg / 1.90 lbs
863.8 g / 8.5 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.34 kg / 0.75 lbs
340.1 g / 3.3 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.07 kg / 0.16 lbs
72.1 g / 0.7 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 0.02 lbs
7.5 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 25x8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.80 kg / 8.39 lbs
3804.0 g / 37.3 N
|
| 1 mm | Stal (~0.2) |
3.21 kg / 7.09 lbs
3214.0 g / 31.5 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 5.90 lbs
2676.0 g / 26.3 N
|
| 3 mm | Stal (~0.2) |
2.20 kg / 4.86 lbs
2204.0 g / 21.6 N
|
| 5 mm | Stal (~0.2) |
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 15 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
172.0 g / 1.7 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 25x8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.71 kg / 12.58 lbs
5706.0 g / 56.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.80 kg / 8.39 lbs
3804.0 g / 37.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.90 kg / 4.19 lbs
1902.0 g / 18.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.51 kg / 20.97 lbs
9510.0 g / 93.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 25x8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 2.10 lbs
951.0 g / 9.3 N
|
| 1 mm |
|
2.38 kg / 5.24 lbs
2377.5 g / 23.3 N
|
| 2 mm |
|
4.76 kg / 10.48 lbs
4755.0 g / 46.6 N
|
| 3 mm |
|
7.13 kg / 15.72 lbs
7132.5 g / 70.0 N
|
| 5 mm |
|
11.89 kg / 26.21 lbs
11887.5 g / 116.6 N
|
| 10 mm |
|
19.02 kg / 41.93 lbs
19020.0 g / 186.6 N
|
| 11 mm |
|
19.02 kg / 41.93 lbs
19020.0 g / 186.6 N
|
| 12 mm |
|
19.02 kg / 41.93 lbs
19020.0 g / 186.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 25x8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.02 kg / 41.93 lbs
19020.0 g / 186.6 N
|
OK |
| 40 °C | -2.2% |
18.60 kg / 41.01 lbs
18601.6 g / 182.5 N
|
OK |
| 60 °C | -4.4% |
18.18 kg / 40.09 lbs
18183.1 g / 178.4 N
|
OK |
| 80 °C | -6.6% |
17.76 kg / 39.16 lbs
17764.7 g / 174.3 N
|
|
| 100 °C | -28.8% |
13.54 kg / 29.86 lbs
13542.2 g / 132.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 25x8x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
30.91 kg / 68.14 lbs
6 082 Gs
|
4.64 kg / 10.22 lbs
4636 g / 45.5 N
|
N/A |
| 1 mm |
28.48 kg / 62.79 lbs
11 091 Gs
|
4.27 kg / 9.42 lbs
4272 g / 41.9 N
|
25.63 kg / 56.51 lbs
~0 Gs
|
| 2 mm |
26.11 kg / 57.57 lbs
10 620 Gs
|
3.92 kg / 8.63 lbs
3917 g / 38.4 N
|
23.50 kg / 51.81 lbs
~0 Gs
|
| 3 mm |
23.86 kg / 52.61 lbs
10 153 Gs
|
3.58 kg / 7.89 lbs
3580 g / 35.1 N
|
21.48 kg / 47.35 lbs
~0 Gs
|
| 5 mm |
19.76 kg / 43.56 lbs
9 238 Gs
|
2.96 kg / 6.53 lbs
2964 g / 29.1 N
|
17.78 kg / 39.20 lbs
~0 Gs
|
| 10 mm |
11.84 kg / 26.11 lbs
7 152 Gs
|
1.78 kg / 3.92 lbs
1776 g / 17.4 N
|
10.66 kg / 23.50 lbs
~0 Gs
|
| 20 mm |
3.98 kg / 8.77 lbs
4 145 Gs
|
0.60 kg / 1.32 lbs
597 g / 5.9 N
|
3.58 kg / 7.89 lbs
~0 Gs
|
| 50 mm |
0.24 kg / 0.54 lbs
1 024 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.26 lbs
712 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
514 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
383 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
293 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
230 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 25x8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 25x8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.43 km/h
(5.12 m/s)
|
0.87 J | |
| 30 mm |
29.70 km/h
(8.25 m/s)
|
2.25 J | |
| 50 mm |
38.27 km/h
(10.63 m/s)
|
3.73 J | |
| 100 mm |
54.10 km/h
(15.03 m/s)
|
7.46 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 10 108 Mx | 101.1 µWb |
| Współczynnik Pc | 1.25 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.02 kg | Standard |
| Woda (dno rzeki) |
21.78 kg
(+2.76 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Świadome użytkowanie
Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko połknięcia
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Poważne obrażenia
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
