MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030450
GTIN/EAN: 5906301812340
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
66.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.02 kg / 186.54 N
Indukcja magnetyczna
525.50 mT / 5255 Gs
Powłoka
[NiCuNi] nikiel
41.71 ZŁ z VAT / szt. + cena za transport
33.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać przez
formularz zgłoszeniowy
na stronie kontaktowej.
Moc a także formę elementów magnetycznych sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030450 |
| GTIN/EAN | 5906301812340 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 66.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.02 kg / 186.54 N |
| Indukcja magnetyczna ~ ? | 525.50 mT / 5255 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze wartości są rezultat kalkulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 25x8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
19.02 kg / 19020.0 g
186.6 N
|
miażdżący |
| 1 mm |
5310 Gs
531.0 mT
|
16.07 kg / 16067.7 g
157.6 N
|
miażdżący |
| 2 mm |
4846 Gs
484.6 mT
|
13.38 kg / 13380.1 g
131.3 N
|
miażdżący |
| 3 mm |
4397 Gs
439.7 mT
|
11.02 kg / 11019.3 g
108.1 N
|
miażdżący |
| 5 mm |
3576 Gs
357.6 mT
|
7.29 kg / 7287.1 g
71.5 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
2.45 kg / 2448.1 g
24.0 N
|
średnie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.86 kg / 863.8 g
8.5 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.34 kg / 340.1 g
3.3 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.07 kg / 72.1 g
0.7 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 7.5 g
0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 25x8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.80 kg / 3804.0 g
37.3 N
|
| 1 mm | Stal (~0.2) |
3.21 kg / 3214.0 g
31.5 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 2676.0 g
26.3 N
|
| 3 mm | Stal (~0.2) |
2.20 kg / 2204.0 g
21.6 N
|
| 5 mm | Stal (~0.2) |
1.46 kg / 1458.0 g
14.3 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 490.0 g
4.8 N
|
| 15 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 68.0 g
0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.71 kg / 5706.0 g
56.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.80 kg / 3804.0 g
37.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.90 kg / 1902.0 g
18.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.51 kg / 9510.0 g
93.3 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 25x8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 951.0 g
9.3 N
|
| 1 mm |
|
2.38 kg / 2377.5 g
23.3 N
|
| 2 mm |
|
4.76 kg / 4755.0 g
46.6 N
|
| 5 mm |
|
11.89 kg / 11887.5 g
116.6 N
|
| 10 mm |
|
19.02 kg / 19020.0 g
186.6 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MP 25x8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.02 kg / 19020.0 g
186.6 N
|
OK |
| 40 °C | -2.2% |
18.60 kg / 18601.6 g
182.5 N
|
OK |
| 60 °C | -4.4% |
18.18 kg / 18183.1 g
178.4 N
|
OK |
| 80 °C | -6.6% |
17.76 kg / 17764.7 g
174.3 N
|
|
| 100 °C | -28.8% |
13.54 kg / 13542.2 g
132.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 25x8x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
30.91 kg / 30909 g
303.2 N
6 082 Gs
|
N/A |
| 1 mm |
28.48 kg / 28480 g
279.4 N
11 091 Gs
|
25.63 kg / 25632 g
251.5 N
~0 Gs
|
| 2 mm |
26.11 kg / 26112 g
256.2 N
10 620 Gs
|
23.50 kg / 23500 g
230.5 N
~0 Gs
|
| 3 mm |
23.86 kg / 23863 g
234.1 N
10 153 Gs
|
21.48 kg / 21477 g
210.7 N
~0 Gs
|
| 5 mm |
19.76 kg / 19758 g
193.8 N
9 238 Gs
|
17.78 kg / 17782 g
174.4 N
~0 Gs
|
| 10 mm |
11.84 kg / 11842 g
116.2 N
7 152 Gs
|
10.66 kg / 10658 g
104.6 N
~0 Gs
|
| 20 mm |
3.98 kg / 3978 g
39.0 N
4 145 Gs
|
3.58 kg / 3581 g
35.1 N
~0 Gs
|
| 50 mm |
0.24 kg / 243 g
2.4 N
1 024 Gs
|
0.22 kg / 219 g
2.1 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 25x8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 25x8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.43 km/h
(5.12 m/s)
|
0.87 J | |
| 30 mm |
29.70 km/h
(8.25 m/s)
|
2.25 J | |
| 50 mm |
38.27 km/h
(10.63 m/s)
|
3.73 J | |
| 100 mm |
54.10 km/h
(15.03 m/s)
|
7.46 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 25x8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 10 108 Mx | 101.1 µWb |
| Współczynnik Pc | 1.25 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.02 kg | Standard |
| Woda (dno rzeki) |
21.78 kg
(+2.76 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans (między magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Ostrzeżenia
Ochrona urządzeń
Potężne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ryzyko uczulenia
Pewna grupa użytkowników posiada uczulenie na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Zagrożenie dla najmłodszych
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
