MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030450
GTIN: 5906301812340
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
66.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.02 kg / 186.54 N
Indukcja magnetyczna
525.50 mT / 5255 Gs
Powłoka
[NiCuNi] nikiel
41.71 ZŁ z VAT / szt. + cena za transport
33.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Parametry i wygląd magnesu sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x8x20 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030450 |
| GTIN | 5906301812340 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 66.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.02 kg / 186.54 N |
| Indukcja magnetyczna ~ ? | 525.50 mT / 5255 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości są wynik symulacji fizycznej. Wyniki oparte są na modelach dla klasy NdFeB. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MP 25x8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
19.02 kg / 19020.0 g
186.6 N
|
niebezpieczny! |
| 1 mm |
5310 Gs
531.0 mT
|
16.07 kg / 16067.7 g
157.6 N
|
niebezpieczny! |
| 2 mm |
4846 Gs
484.6 mT
|
13.38 kg / 13380.1 g
131.3 N
|
niebezpieczny! |
| 3 mm |
4397 Gs
439.7 mT
|
11.02 kg / 11019.3 g
108.1 N
|
niebezpieczny! |
| 5 mm |
3576 Gs
357.6 mT
|
7.29 kg / 7287.1 g
71.5 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
2.45 kg / 2448.1 g
24.0 N
|
uwaga |
| 15 mm |
1231 Gs
123.1 mT
|
0.86 kg / 863.8 g
8.5 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.34 kg / 340.1 g
3.3 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.07 kg / 72.1 g
0.7 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 7.5 g
0.1 N
|
niskie ryzyko |
MP 25x8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.80 kg / 3804.0 g
37.3 N
|
| 1 mm | Stal (~0.2) |
3.21 kg / 3214.0 g
31.5 N
|
| 2 mm | Stal (~0.2) |
2.68 kg / 2676.0 g
26.3 N
|
| 3 mm | Stal (~0.2) |
2.20 kg / 2204.0 g
21.6 N
|
| 5 mm | Stal (~0.2) |
1.46 kg / 1458.0 g
14.3 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 490.0 g
4.8 N
|
| 15 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 68.0 g
0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MP 25x8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.71 kg / 5706.0 g
56.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.80 kg / 3804.0 g
37.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.90 kg / 1902.0 g
18.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.51 kg / 9510.0 g
93.3 N
|
MP 25x8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 951.0 g
9.3 N
|
| 1 mm |
|
2.38 kg / 2377.5 g
23.3 N
|
| 2 mm |
|
4.76 kg / 4755.0 g
46.6 N
|
| 5 mm |
|
11.89 kg / 11887.5 g
116.6 N
|
| 10 mm |
|
19.02 kg / 19020.0 g
186.6 N
|
MP 25x8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.02 kg / 19020.0 g
186.6 N
|
OK |
| 40 °C | -2.2% |
18.60 kg / 18601.6 g
182.5 N
|
OK |
| 60 °C | -4.4% |
18.18 kg / 18183.1 g
178.4 N
|
OK |
| 80 °C | -6.6% |
17.76 kg / 17764.7 g
174.3 N
|
|
| 100 °C | -28.8% |
13.54 kg / 13542.2 g
132.8 N
|
MP 25x8x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
30.91 kg / 30909 g
303.2 N
6 082 Gs
|
N/A |
| 1 mm |
28.48 kg / 28480 g
279.4 N
11 091 Gs
|
25.63 kg / 25632 g
251.5 N
~0 Gs
|
| 2 mm |
26.11 kg / 26112 g
256.2 N
10 620 Gs
|
23.50 kg / 23500 g
230.5 N
~0 Gs
|
| 3 mm |
23.86 kg / 23863 g
234.1 N
10 153 Gs
|
21.48 kg / 21477 g
210.7 N
~0 Gs
|
| 5 mm |
19.76 kg / 19758 g
193.8 N
9 238 Gs
|
17.78 kg / 17782 g
174.4 N
~0 Gs
|
| 10 mm |
11.84 kg / 11842 g
116.2 N
7 152 Gs
|
10.66 kg / 10658 g
104.6 N
~0 Gs
|
| 20 mm |
3.98 kg / 3978 g
39.0 N
4 145 Gs
|
3.58 kg / 3581 g
35.1 N
~0 Gs
|
| 50 mm |
0.24 kg / 243 g
2.4 N
1 024 Gs
|
0.22 kg / 219 g
2.1 N
~0 Gs
|
MP 25x8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.43 km/h
(5.12 m/s)
|
0.87 J | |
| 30 mm |
29.70 km/h
(8.25 m/s)
|
2.25 J | |
| 50 mm |
38.27 km/h
(10.63 m/s)
|
3.73 J | |
| 100 mm |
54.10 km/h
(15.03 m/s)
|
7.46 J |
MP 25x8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 10 108 Mx | 101.1 µWb |
| Współczynnik Pc | 1.25 | Wysoki (Stabilny) |
MP 25x8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.02 kg | Standard |
| Woda (dno rzeki) |
21.78 kg
(+2.76 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Zobacz też inne oferty
Zalety i wady magnesów z neodymu NdFeB.
Neodymy to nie tylko siła, ale także inne kluczowe cechy, takie jak::
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
Wartość udźwigu podana w specyfikacji dotyczy wartości maksymalnej, zarejestrowanej w warunkach laboratoryjnych, co oznacza test:
- z zastosowaniem płyty ze miękkiej stali, działającej jako idealny przewodnik strumienia
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- przy zerowej szczelinie (brak powłok)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
W rzeczywistych zastosowaniach, rzeczywisty udźwig zależy od szeregu czynników, uszeregowanych od najważniejszych:
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Udźwig określano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.
Ostrzeżenia
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Poważne obrażenia
Silne magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Przegrzanie magnesu
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Reakcje alergiczne
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
To nie jest zabawka
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Ważne!
Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczne magnesy.
