MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030183
GTIN/EAN: 5906301812005
Średnica
16 mm [±0,1 mm]
Średnica wewnętrzna Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.32 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.68 kg / 6.62 N
Indukcja magnetyczna
150.33 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
1.304 ZŁ z VAT / szt. + cena za transport
1.060 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie pisz za pomocą
formularz zapytania
przez naszą stronę.
Parametry i kształt magnesu zobaczysz w naszym
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030183 |
| GTIN/EAN | 5906301812005 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 16 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.32 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.68 kg / 6.62 N |
| Indukcja magnetyczna ~ ? | 150.33 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Niniejsze dane są rezultat kalkulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MP 16x12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6011 Gs
601.1 mT
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
bezpieczny |
| 1 mm |
5259 Gs
525.9 mT
|
0.52 kg / 1.15 lbs
520.7 g / 5.1 N
|
bezpieczny |
| 2 mm |
4534 Gs
453.4 mT
|
0.39 kg / 0.85 lbs
387.0 g / 3.8 N
|
bezpieczny |
| 3 mm |
3870 Gs
387.0 mT
|
0.28 kg / 0.62 lbs
281.9 g / 2.8 N
|
bezpieczny |
| 5 mm |
2776 Gs
277.6 mT
|
0.15 kg / 0.32 lbs
145.1 g / 1.4 N
|
bezpieczny |
| 10 mm |
1251 Gs
125.1 mT
|
0.03 kg / 0.06 lbs
29.4 g / 0.3 N
|
bezpieczny |
| 15 mm |
643 Gs
64.3 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
bezpieczny |
| 20 mm |
372 Gs
37.2 mT
|
0.00 kg / 0.01 lbs
2.6 g / 0.0 N
|
bezpieczny |
| 30 mm |
159 Gs
15.9 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
49 Gs
4.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 16x12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 16x12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 0.45 lbs
204.0 g / 2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 16x12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 1 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 2 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 3 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 5 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 10 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 11 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 12 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 16x12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
OK |
| 60 °C | -4.4% |
0.65 kg / 1.43 lbs
650.1 g / 6.4 N
|
OK |
| 80 °C | -6.6% |
0.64 kg / 1.40 lbs
635.1 g / 6.2 N
|
|
| 100 °C | -28.8% |
0.48 kg / 1.07 lbs
484.2 g / 4.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 16x12x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
37.47 kg / 82.60 lbs
6 145 Gs
|
5.62 kg / 12.39 lbs
5620 g / 55.1 N
|
N/A |
| 1 mm |
32.95 kg / 72.65 lbs
11 273 Gs
|
4.94 kg / 10.90 lbs
4943 g / 48.5 N
|
29.66 kg / 65.38 lbs
~0 Gs
|
| 2 mm |
28.69 kg / 63.25 lbs
10 519 Gs
|
4.30 kg / 9.49 lbs
4303 g / 42.2 N
|
25.82 kg / 56.92 lbs
~0 Gs
|
| 3 mm |
24.81 kg / 54.69 lbs
9 781 Gs
|
3.72 kg / 8.20 lbs
3721 g / 36.5 N
|
22.33 kg / 49.22 lbs
~0 Gs
|
| 5 mm |
18.24 kg / 40.20 lbs
8 386 Gs
|
2.74 kg / 6.03 lbs
2735 g / 26.8 N
|
16.41 kg / 36.18 lbs
~0 Gs
|
| 10 mm |
7.99 kg / 17.62 lbs
5 552 Gs
|
1.20 kg / 2.64 lbs
1199 g / 11.8 N
|
7.19 kg / 15.86 lbs
~0 Gs
|
| 20 mm |
1.62 kg / 3.58 lbs
2 501 Gs
|
0.24 kg / 0.54 lbs
243 g / 2.4 N
|
1.46 kg / 3.22 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
471 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
318 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
225 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
166 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
126 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
98 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 16x12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 16x12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.50 km/h
(6.53 m/s)
|
0.03 J | |
| 30 mm |
39.66 km/h
(11.02 m/s)
|
0.08 J | |
| 50 mm |
51.19 km/h
(14.22 m/s)
|
0.13 J | |
| 100 mm |
72.39 km/h
(20.11 m/s)
|
0.27 J |
Tabela 9: Odporność na korozję
MP 16x12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 16x12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 219 Mx | 112.2 µWb |
| Współczynnik Pc | 1.22 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 16x12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.68 kg | Standard |
| Woda (dno rzeki) |
0.78 kg
(+0.10 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Dystans – występowanie ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Zasady obsługi
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Zagrożenie zapłonem
Proszek generowany podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ochrona dłoni
Silne magnesy mogą połamać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Alergia na nikiel
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
