MPL 3x3x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020146
GTIN/EAN: 5906301811527
Długość
3 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.07 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.23 kg / 2.29 N
Indukcja magnetyczna
317.31 mT / 3173 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość przez
formularz kontaktowy
na stronie kontakt.
Masę a także formę magnesu skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 3x3x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 3x3x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020146 |
| GTIN/EAN | 5906301811527 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 3 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.07 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.23 kg / 2.29 N |
| Indukcja magnetyczna ~ ? | 317.31 mT / 3173 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione informacje stanowią rezultat analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 3x3x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3168 Gs
316.8 mT
|
0.23 kg / 230.0 g
2.3 N
|
słaby uchwyt |
| 1 mm |
1565 Gs
156.5 mT
|
0.06 kg / 56.1 g
0.6 N
|
słaby uchwyt |
| 2 mm |
659 Gs
65.9 mT
|
0.01 kg / 9.9 g
0.1 N
|
słaby uchwyt |
| 3 mm |
307 Gs
30.7 mT
|
0.00 kg / 2.2 g
0.0 N
|
słaby uchwyt |
| 5 mm |
94 Gs
9.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 3x3x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 3x3x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.07 kg / 69.0 g
0.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.05 kg / 46.0 g
0.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 23.0 g
0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.12 kg / 115.0 g
1.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 3x3x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 23.0 g
0.2 N
|
| 1 mm |
|
0.06 kg / 57.5 g
0.6 N
|
| 2 mm |
|
0.12 kg / 115.0 g
1.1 N
|
| 5 mm |
|
0.23 kg / 230.0 g
2.3 N
|
| 10 mm |
|
0.23 kg / 230.0 g
2.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 3x3x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.23 kg / 230.0 g
2.3 N
|
OK |
| 40 °C | -2.2% |
0.22 kg / 224.9 g
2.2 N
|
OK |
| 60 °C | -4.4% |
0.22 kg / 219.9 g
2.2 N
|
|
| 80 °C | -6.6% |
0.21 kg / 214.8 g
2.1 N
|
|
| 100 °C | -28.8% |
0.16 kg / 163.8 g
1.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 3x3x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.56 kg / 557 g
5.5 N
4 719 Gs
|
N/A |
| 1 mm |
0.31 kg / 307 g
3.0 N
4 706 Gs
|
0.28 kg / 277 g
2.7 N
~0 Gs
|
| 2 mm |
0.14 kg / 136 g
1.3 N
3 129 Gs
|
0.12 kg / 122 g
1.2 N
~0 Gs
|
| 3 mm |
0.06 kg / 57 g
0.6 N
2 019 Gs
|
0.05 kg / 51 g
0.5 N
~0 Gs
|
| 5 mm |
0.01 kg / 11 g
0.1 N
885 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
188 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
2 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 3x3x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 1.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 3x3x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
57.81 km/h
(16.06 m/s)
|
0.01 J | |
| 30 mm |
100.13 km/h
(27.81 m/s)
|
0.03 J | |
| 50 mm |
129.27 km/h
(35.91 m/s)
|
0.05 J | |
| 100 mm |
182.81 km/h
(50.78 m/s)
|
0.09 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 3x3x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 3x3x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 306 Mx | 3.1 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 3x3x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.23 kg | Standard |
| Woda (dno rzeki) |
0.26 kg
(+0.03 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans – występowanie ciała obcego (rdza, taśma, szczelina) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ochrona dłoni
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Świadome użytkowanie
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
