MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030185
GTIN/EAN: 5906301812029
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
27 mm [±0,1 mm]
Waga
59.64 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.36 kg / 101.60 N
Indukcja magnetyczna
581.04 mT / 5810 Gs
Powłoka
[NiCuNi] nikiel
33.00 ZŁ z VAT / szt. + cena za transport
26.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo skontaktuj się poprzez
formularz zapytania
na stronie kontaktowej.
Właściwości i budowę magnesu neodymowego skontrolujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030185 |
| GTIN/EAN | 5906301812029 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 27 mm [±0,1 mm] |
| Waga | 59.64 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.36 kg / 101.60 N |
| Indukcja magnetyczna ~ ? | 581.04 mT / 5810 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe informacje są wynik analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 20x5x27 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5716 Gs
571.6 mT
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
niebezpieczny! |
| 1 mm |
5288 Gs
528.8 mT
|
8.87 kg / 19.55 lbs
8865.5 g / 87.0 N
|
uwaga |
| 2 mm |
4861 Gs
486.1 mT
|
7.49 kg / 16.51 lbs
7491.0 g / 73.5 N
|
uwaga |
| 3 mm |
4446 Gs
444.6 mT
|
6.27 kg / 13.82 lbs
6267.5 g / 61.5 N
|
uwaga |
| 5 mm |
3677 Gs
367.7 mT
|
4.29 kg / 9.45 lbs
4285.9 g / 42.0 N
|
uwaga |
| 10 mm |
2216 Gs
221.6 mT
|
1.56 kg / 3.43 lbs
1557.1 g / 15.3 N
|
słaby uchwyt |
| 15 mm |
1354 Gs
135.4 mT
|
0.58 kg / 1.28 lbs
580.9 g / 5.7 N
|
słaby uchwyt |
| 20 mm |
864 Gs
86.4 mT
|
0.24 kg / 0.52 lbs
236.9 g / 2.3 N
|
słaby uchwyt |
| 30 mm |
405 Gs
40.5 mT
|
0.05 kg / 0.11 lbs
52.1 g / 0.5 N
|
słaby uchwyt |
| 50 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.01 lbs
5.6 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 20x5x27 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.07 kg / 4.57 lbs
2072.0 g / 20.3 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1774.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| 3 mm | Stal (~0.2) |
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| 5 mm | Stal (~0.2) |
0.86 kg / 1.89 lbs
858.0 g / 8.4 N
|
| 10 mm | Stal (~0.2) |
0.31 kg / 0.69 lbs
312.0 g / 3.1 N
|
| 15 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 20 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 20x5x27 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.11 kg / 6.85 lbs
3108.0 g / 30.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2072.0 g / 20.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1036.0 g / 10.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.18 kg / 11.42 lbs
5180.0 g / 50.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 20x5x27 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.14 lbs
518.0 g / 5.1 N
|
| 1 mm |
|
1.30 kg / 2.85 lbs
1295.0 g / 12.7 N
|
| 2 mm |
|
2.59 kg / 5.71 lbs
2590.0 g / 25.4 N
|
| 3 mm |
|
3.89 kg / 8.56 lbs
3885.0 g / 38.1 N
|
| 5 mm |
|
6.48 kg / 14.27 lbs
6475.0 g / 63.5 N
|
| 10 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
| 11 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
| 12 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 20x5x27 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
OK |
| 40 °C | -2.2% |
10.13 kg / 22.34 lbs
10132.1 g / 99.4 N
|
OK |
| 60 °C | -4.4% |
9.90 kg / 21.83 lbs
9904.2 g / 97.2 N
|
OK |
| 80 °C | -6.6% |
9.68 kg / 21.33 lbs
9676.2 g / 94.9 N
|
|
| 100 °C | -28.8% |
7.38 kg / 16.26 lbs
7376.3 g / 72.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 20x5x27 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
44.24 kg / 97.54 lbs
6 064 Gs
|
6.64 kg / 14.63 lbs
6636 g / 65.1 N
|
N/A |
| 1 mm |
41.02 kg / 90.43 lbs
11 008 Gs
|
6.15 kg / 13.56 lbs
6153 g / 60.4 N
|
36.92 kg / 81.39 lbs
~0 Gs
|
| 2 mm |
37.86 kg / 83.47 lbs
10 576 Gs
|
5.68 kg / 12.52 lbs
5679 g / 55.7 N
|
34.07 kg / 75.12 lbs
~0 Gs
|
| 3 mm |
34.85 kg / 76.83 lbs
10 146 Gs
|
5.23 kg / 11.52 lbs
5227 g / 51.3 N
|
31.36 kg / 69.14 lbs
~0 Gs
|
| 5 mm |
29.30 kg / 64.58 lbs
9 303 Gs
|
4.39 kg / 9.69 lbs
4394 g / 43.1 N
|
26.37 kg / 58.13 lbs
~0 Gs
|
| 10 mm |
18.30 kg / 40.35 lbs
7 353 Gs
|
2.75 kg / 6.05 lbs
2745 g / 26.9 N
|
16.47 kg / 36.32 lbs
~0 Gs
|
| 20 mm |
6.65 kg / 14.66 lbs
4 432 Gs
|
1.00 kg / 2.20 lbs
997 g / 9.8 N
|
5.98 kg / 13.19 lbs
~0 Gs
|
| 50 mm |
0.45 kg / 1.00 lbs
1 159 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 60 mm |
0.22 kg / 0.49 lbs
811 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.26 lbs
589 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.14 lbs
440 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
338 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
265 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 20x5x27 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 20x5x27 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
14.49 km/h
(4.02 m/s)
|
0.48 J | |
| 30 mm |
23.09 km/h
(6.42 m/s)
|
1.23 J | |
| 50 mm |
29.73 km/h
(8.26 m/s)
|
2.03 J | |
| 100 mm |
42.03 km/h
(11.68 m/s)
|
4.07 J |
Tabela 9: Odporność na korozję
MP 20x5x27 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 20x5x27 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 314 Mx | 143.1 µWb |
| Współczynnik Pc | 1.16 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 20x5x27 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.36 kg | Standard |
| Woda (dno rzeki) |
11.86 kg
(+1.50 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez powłok)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Zagrożenie dla elektroniki
Potężne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Temperatura pracy
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko złamań
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Samozapłon
Pył generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Nie dawać dzieciom
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
