MW 5x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010503
GTIN/EAN: 5906301814979
Średnica Ø
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.79 kg / 7.76 N
Indukcja magnetyczna
553.14 mT / 5531 Gs
Powłoka
[NiCuNi] nikiel
0.394 ZŁ z VAT / szt. + cena za transport
0.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub napisz poprzez
nasz formularz online
na naszej stronie.
Właściwości oraz wygląd magnesu neodymowego skontrolujesz dzięki naszemu
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 5x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010503 |
| GTIN/EAN | 5906301814979 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.79 kg / 7.76 N |
| Indukcja magnetyczna ~ ? | 553.14 mT / 5531 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe dane stanowią wynik analizy inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5523 Gs
552.3 mT
|
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
niskie ryzyko |
| 1 mm |
3420 Gs
342.0 mT
|
0.30 kg / 0.67 lbs
303.0 g / 3.0 N
|
niskie ryzyko |
| 2 mm |
1966 Gs
196.6 mT
|
0.10 kg / 0.22 lbs
100.1 g / 1.0 N
|
niskie ryzyko |
| 3 mm |
1155 Gs
115.5 mT
|
0.03 kg / 0.08 lbs
34.5 g / 0.3 N
|
niskie ryzyko |
| 5 mm |
469 Gs
46.9 mT
|
0.01 kg / 0.01 lbs
5.7 g / 0.1 N
|
niskie ryzyko |
| 10 mm |
101 Gs
10.1 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.24 kg / 0.52 lbs
237.0 g / 2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
79.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.40 kg / 0.87 lbs
395.0 g / 3.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
79.0 g / 0.8 N
|
| 1 mm |
|
0.20 kg / 0.44 lbs
197.5 g / 1.9 N
|
| 2 mm |
|
0.40 kg / 0.87 lbs
395.0 g / 3.9 N
|
| 3 mm |
|
0.59 kg / 1.31 lbs
592.5 g / 5.8 N
|
| 5 mm |
|
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 10 mm |
|
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 11 mm |
|
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 12 mm |
|
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
OK |
| 40 °C | -2.2% |
0.77 kg / 1.70 lbs
772.6 g / 7.6 N
|
OK |
| 60 °C | -4.4% |
0.76 kg / 1.67 lbs
755.2 g / 7.4 N
|
OK |
| 80 °C | -6.6% |
0.74 kg / 1.63 lbs
737.9 g / 7.2 N
|
|
| 100 °C | -28.8% |
0.56 kg / 1.24 lbs
562.5 g / 5.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.69 kg / 8.14 lbs
5 990 Gs
|
0.55 kg / 1.22 lbs
554 g / 5.4 N
|
N/A |
| 1 mm |
2.37 kg / 5.23 lbs
8 857 Gs
|
0.36 kg / 0.79 lbs
356 g / 3.5 N
|
2.14 kg / 4.71 lbs
~0 Gs
|
| 2 mm |
1.42 kg / 3.12 lbs
6 841 Gs
|
0.21 kg / 0.47 lbs
212 g / 2.1 N
|
1.27 kg / 2.81 lbs
~0 Gs
|
| 3 mm |
0.82 kg / 1.80 lbs
5 194 Gs
|
0.12 kg / 0.27 lbs
122 g / 1.2 N
|
0.73 kg / 1.62 lbs
~0 Gs
|
| 5 mm |
0.27 kg / 0.60 lbs
2 996 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 10 mm |
0.03 kg / 0.06 lbs
939 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
202 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.96 km/h
(9.16 m/s)
|
0.03 J | |
| 30 mm |
57.07 km/h
(15.85 m/s)
|
0.09 J | |
| 50 mm |
73.68 km/h
(20.47 m/s)
|
0.15 J | |
| 100 mm |
104.20 km/h
(28.95 m/s)
|
0.31 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 120 Mx | 11.2 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.79 kg | Standard |
| Woda (dno rzeki) |
0.90 kg
(+0.11 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi zaledwie ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Odstęp (między magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
