MW 25x12 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010502
GTIN/EAN: 5906301814986
Średnica Ø
25 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
44.18 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.60 kg / 192.25 N
Indukcja magnetyczna
429.18 mT / 4292 Gs
Powłoka
[NiCuNi] nikiel
16.64 ZŁ z VAT / szt. + cena za transport
13.53 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo skontaktuj się przez
nasz formularz online
na stronie kontaktowej.
Parametry oraz wygląd magnesu neodymowego skontrolujesz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Parametry - MW 25x12 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x12 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010502 |
| GTIN/EAN | 5906301814986 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 44.18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.60 kg / 192.25 N |
| Indukcja magnetyczna ~ ? | 429.18 mT / 4292 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Poniższe informacje są bezpośredni efekt kalkulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 25x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4291 Gs
429.1 mT
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
krytyczny poziom |
| 1 mm |
3975 Gs
397.5 mT
|
16.82 kg / 37.08 lbs
16820.5 g / 165.0 N
|
krytyczny poziom |
| 2 mm |
3645 Gs
364.5 mT
|
14.15 kg / 31.19 lbs
14147.5 g / 138.8 N
|
krytyczny poziom |
| 3 mm |
3316 Gs
331.6 mT
|
11.71 kg / 25.81 lbs
11707.5 g / 114.9 N
|
krytyczny poziom |
| 5 mm |
2692 Gs
269.2 mT
|
7.72 kg / 17.02 lbs
7718.0 g / 75.7 N
|
mocny |
| 10 mm |
1518 Gs
151.8 mT
|
2.45 kg / 5.41 lbs
2451.8 g / 24.1 N
|
mocny |
| 15 mm |
863 Gs
86.3 mT
|
0.79 kg / 1.75 lbs
793.5 g / 7.8 N
|
niskie ryzyko |
| 20 mm |
517 Gs
51.7 mT
|
0.29 kg / 0.63 lbs
285.1 g / 2.8 N
|
niskie ryzyko |
| 30 mm |
219 Gs
21.9 mT
|
0.05 kg / 0.11 lbs
51.2 g / 0.5 N
|
niskie ryzyko |
| 50 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 25x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.92 kg / 8.64 lbs
3920.0 g / 38.5 N
|
| 1 mm | Stal (~0.2) |
3.36 kg / 7.42 lbs
3364.0 g / 33.0 N
|
| 2 mm | Stal (~0.2) |
2.83 kg / 6.24 lbs
2830.0 g / 27.8 N
|
| 3 mm | Stal (~0.2) |
2.34 kg / 5.16 lbs
2342.0 g / 23.0 N
|
| 5 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 25x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.88 kg / 12.96 lbs
5880.0 g / 57.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.92 kg / 8.64 lbs
3920.0 g / 38.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.96 kg / 4.32 lbs
1960.0 g / 19.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.80 kg / 21.61 lbs
9800.0 g / 96.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 25x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 2.16 lbs
980.0 g / 9.6 N
|
| 1 mm |
|
2.45 kg / 5.40 lbs
2450.0 g / 24.0 N
|
| 2 mm |
|
4.90 kg / 10.80 lbs
4900.0 g / 48.1 N
|
| 3 mm |
|
7.35 kg / 16.20 lbs
7350.0 g / 72.1 N
|
| 5 mm |
|
12.25 kg / 27.01 lbs
12250.0 g / 120.2 N
|
| 10 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
| 11 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
| 12 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 25x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
OK |
| 40 °C | -2.2% |
19.17 kg / 42.26 lbs
19168.8 g / 188.0 N
|
OK |
| 60 °C | -4.4% |
18.74 kg / 41.31 lbs
18737.6 g / 183.8 N
|
|
| 80 °C | -6.6% |
18.31 kg / 40.36 lbs
18306.4 g / 179.6 N
|
|
| 100 °C | -28.8% |
13.96 kg / 30.77 lbs
13955.2 g / 136.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 25x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
55.71 kg / 122.82 lbs
5 494 Gs
|
8.36 kg / 18.42 lbs
8357 g / 82.0 N
|
N/A |
| 1 mm |
51.78 kg / 114.14 lbs
8 273 Gs
|
7.77 kg / 17.12 lbs
7766 g / 76.2 N
|
46.60 kg / 102.73 lbs
~0 Gs
|
| 2 mm |
47.81 kg / 105.40 lbs
7 949 Gs
|
7.17 kg / 15.81 lbs
7172 g / 70.4 N
|
43.03 kg / 94.86 lbs
~0 Gs
|
| 3 mm |
43.94 kg / 96.88 lbs
7 621 Gs
|
6.59 kg / 14.53 lbs
6592 g / 64.7 N
|
39.55 kg / 87.19 lbs
~0 Gs
|
| 5 mm |
36.65 kg / 80.80 lbs
6 960 Gs
|
5.50 kg / 12.12 lbs
5497 g / 53.9 N
|
32.98 kg / 72.72 lbs
~0 Gs
|
| 10 mm |
21.94 kg / 48.36 lbs
5 385 Gs
|
3.29 kg / 7.25 lbs
3291 g / 32.3 N
|
19.74 kg / 43.53 lbs
~0 Gs
|
| 20 mm |
6.97 kg / 15.36 lbs
3 035 Gs
|
1.05 kg / 2.30 lbs
1045 g / 10.3 N
|
6.27 kg / 13.83 lbs
~0 Gs
|
| 50 mm |
0.33 kg / 0.72 lbs
657 Gs
|
0.05 kg / 0.11 lbs
49 g / 0.5 N
|
0.29 kg / 0.65 lbs
~0 Gs
|
| 60 mm |
0.15 kg / 0.32 lbs
439 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.16 lbs
306 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
221 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
165 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
126 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 25x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 25x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.84 km/h
(6.35 m/s)
|
0.89 J | |
| 30 mm |
36.85 km/h
(10.24 m/s)
|
2.31 J | |
| 50 mm |
47.51 km/h
(13.20 m/s)
|
3.85 J | |
| 100 mm |
67.17 km/h
(18.66 m/s)
|
7.69 J |
Tabela 9: Parametry powłoki (trwałość)
MW 25x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 25x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 413 Mx | 214.1 µWb |
| Współczynnik Pc | 0.57 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 25x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.60 kg | Standard |
| Woda (dno rzeki) |
22.44 kg
(+2.84 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.57
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część strumienia ucieka na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Nośniki danych
Ekstremalne oddziaływanie może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Tylko dla dorosłych
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Alergia na nikiel
Część populacji wykazuje alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
Rozprysk materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Bezpieczna praca
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
