MW 8x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010504
GTIN/EAN: 5906301814993
Średnica Ø
8 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
3.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.84 kg / 18.00 N
Indukcja magnetyczna
574.74 mT / 5747 Gs
Powłoka
[NiCuNi] nikiel
1.501 ZŁ z VAT / szt. + cena za transport
1.220 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie napisz poprzez
formularz
na stronie kontaktowej.
Parametry i wygląd magnesów sprawdzisz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MW 8x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010504 |
| GTIN/EAN | 5906301814993 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 3.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.84 kg / 18.00 N |
| Indukcja magnetyczna ~ ? | 574.74 mT / 5747 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze dane stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 8x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5742 Gs
574.2 mT
|
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
niskie ryzyko |
| 1 mm |
4323 Gs
432.3 mT
|
1.04 kg / 2.30 lbs
1043.0 g / 10.2 N
|
niskie ryzyko |
| 2 mm |
3109 Gs
310.9 mT
|
0.54 kg / 1.19 lbs
539.5 g / 5.3 N
|
niskie ryzyko |
| 3 mm |
2206 Gs
220.6 mT
|
0.27 kg / 0.60 lbs
271.6 g / 2.7 N
|
niskie ryzyko |
| 5 mm |
1149 Gs
114.9 mT
|
0.07 kg / 0.16 lbs
73.7 g / 0.7 N
|
niskie ryzyko |
| 10 mm |
323 Gs
32.3 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
niskie ryzyko |
| 15 mm |
131 Gs
13.1 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 8x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 1 mm | Stal (~0.2) |
0.21 kg / 0.46 lbs
208.0 g / 2.0 N
|
| 2 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 8x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 0.41 lbs
184.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 8x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 0.41 lbs
184.0 g / 1.8 N
|
| 1 mm |
|
0.46 kg / 1.01 lbs
460.0 g / 4.5 N
|
| 2 mm |
|
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
| 3 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 5 mm |
|
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
| 10 mm |
|
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
| 11 mm |
|
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
| 12 mm |
|
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 8x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.84 kg / 4.06 lbs
1840.0 g / 18.1 N
|
OK |
| 40 °C | -2.2% |
1.80 kg / 3.97 lbs
1799.5 g / 17.7 N
|
OK |
| 60 °C | -4.4% |
1.76 kg / 3.88 lbs
1759.0 g / 17.3 N
|
OK |
| 80 °C | -6.6% |
1.72 kg / 3.79 lbs
1718.6 g / 16.9 N
|
|
| 100 °C | -28.8% |
1.31 kg / 2.89 lbs
1310.1 g / 12.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 8x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.22 kg / 22.52 lbs
6 064 Gs
|
1.53 kg / 3.38 lbs
1532 g / 15.0 N
|
N/A |
| 1 mm |
7.82 kg / 17.25 lbs
10 050 Gs
|
1.17 kg / 2.59 lbs
1174 g / 11.5 N
|
7.04 kg / 15.52 lbs
~0 Gs
|
| 2 mm |
5.79 kg / 12.77 lbs
8 646 Gs
|
0.87 kg / 1.92 lbs
869 g / 8.5 N
|
5.21 kg / 11.49 lbs
~0 Gs
|
| 3 mm |
4.19 kg / 9.25 lbs
7 358 Gs
|
0.63 kg / 1.39 lbs
629 g / 6.2 N
|
3.77 kg / 8.32 lbs
~0 Gs
|
| 5 mm |
2.13 kg / 4.69 lbs
5 238 Gs
|
0.32 kg / 0.70 lbs
319 g / 3.1 N
|
1.91 kg / 4.22 lbs
~0 Gs
|
| 10 mm |
0.41 kg / 0.90 lbs
2 299 Gs
|
0.06 kg / 0.14 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 20 mm |
0.03 kg / 0.07 lbs
646 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 8x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 8x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.32 km/h
(6.20 m/s)
|
0.07 J | |
| 30 mm |
38.59 km/h
(10.72 m/s)
|
0.22 J | |
| 50 mm |
49.82 km/h
(13.84 m/s)
|
0.36 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
0.72 J |
Tabela 9: Odporność na korozję
MW 8x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 8x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 040 Mx | 30.4 µWb |
| Współczynnik Pc | 1.00 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 8x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.84 kg | Standard |
| Woda (dno rzeki) |
2.11 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.00
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- z wykorzystaniem podłoża ze miękkiej stali, pełniącej rolę element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Ryzyko połknięcia
Magnesy neodymowe to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca działanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ochrona dłoni
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Nadwrażliwość na metale
Pewna grupa użytkowników wykazuje uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może wywołać wysypkę. Wskazane jest używanie rękawic bezlateksowych.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Maksymalna temperatura
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Implanty kardiologiczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
