MW 45x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010071
GTIN/EAN: 5906301810704
Średnica Ø
45 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
238.56 g
Kierunek magnesowania
↑ osiowy
Udźwig
60.94 kg / 597.79 N
Indukcja magnetyczna
411.81 mT / 4118 Gs
Powłoka
[NiCuNi] nikiel
84.45 ZŁ z VAT / szt. + cena za transport
68.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz zgłoszeniowy
przez naszą stronę.
Siłę a także kształt magnesów neodymowych przetestujesz u nas w
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MW 45x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010071 |
| GTIN/EAN | 5906301810704 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 238.56 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 60.94 kg / 597.79 N |
| Indukcja magnetyczna ~ ? | 411.81 mT / 4118 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje stanowią bezpośredni efekt symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 45x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4117 Gs
411.7 mT
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
krytyczny poziom |
| 1 mm |
3955 Gs
395.5 mT
|
56.23 kg / 123.96 lbs
56228.7 g / 551.6 N
|
krytyczny poziom |
| 2 mm |
3786 Gs
378.6 mT
|
51.51 kg / 113.57 lbs
51512.3 g / 505.3 N
|
krytyczny poziom |
| 3 mm |
3613 Gs
361.3 mT
|
46.91 kg / 103.42 lbs
46911.0 g / 460.2 N
|
krytyczny poziom |
| 5 mm |
3263 Gs
326.3 mT
|
38.28 kg / 84.40 lbs
38282.6 g / 375.6 N
|
krytyczny poziom |
| 10 mm |
2442 Gs
244.2 mT
|
21.43 kg / 47.26 lbs
21434.6 g / 210.3 N
|
krytyczny poziom |
| 15 mm |
1776 Gs
177.6 mT
|
11.34 kg / 25.00 lbs
11340.0 g / 111.2 N
|
krytyczny poziom |
| 20 mm |
1285 Gs
128.5 mT
|
5.93 kg / 13.08 lbs
5932.8 g / 58.2 N
|
uwaga |
| 30 mm |
694 Gs
69.4 mT
|
1.73 kg / 3.82 lbs
1730.8 g / 17.0 N
|
niskie ryzyko |
| 50 mm |
249 Gs
24.9 mT
|
0.22 kg / 0.49 lbs
222.3 g / 2.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 45x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| 1 mm | Stal (~0.2) |
11.25 kg / 24.79 lbs
11246.0 g / 110.3 N
|
| 2 mm | Stal (~0.2) |
10.30 kg / 22.71 lbs
10302.0 g / 101.1 N
|
| 3 mm | Stal (~0.2) |
9.38 kg / 20.68 lbs
9382.0 g / 92.0 N
|
| 5 mm | Stal (~0.2) |
7.66 kg / 16.88 lbs
7656.0 g / 75.1 N
|
| 10 mm | Stal (~0.2) |
4.29 kg / 9.45 lbs
4286.0 g / 42.0 N
|
| 15 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2268.0 g / 22.2 N
|
| 20 mm | Stal (~0.2) |
1.19 kg / 2.61 lbs
1186.0 g / 11.6 N
|
| 30 mm | Stal (~0.2) |
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
|
| 50 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 45x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
18.28 kg / 40.30 lbs
18282.0 g / 179.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.09 kg / 13.43 lbs
6094.0 g / 59.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
30.47 kg / 67.17 lbs
30470.0 g / 298.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 45x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.03 kg / 4.48 lbs
2031.3 g / 19.9 N
|
| 1 mm |
|
5.08 kg / 11.20 lbs
5078.3 g / 49.8 N
|
| 2 mm |
|
10.16 kg / 22.39 lbs
10156.7 g / 99.6 N
|
| 3 mm |
|
15.24 kg / 33.59 lbs
15235.0 g / 149.5 N
|
| 5 mm |
|
25.39 kg / 55.98 lbs
25391.7 g / 249.1 N
|
| 10 mm |
|
50.78 kg / 111.96 lbs
50783.3 g / 498.2 N
|
| 11 mm |
|
55.86 kg / 123.15 lbs
55861.7 g / 548.0 N
|
| 12 mm |
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 45x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
OK |
| 40 °C | -2.2% |
59.60 kg / 131.39 lbs
59599.3 g / 584.7 N
|
OK |
| 60 °C | -4.4% |
58.26 kg / 128.44 lbs
58258.6 g / 571.5 N
|
|
| 80 °C | -6.6% |
56.92 kg / 125.48 lbs
56918.0 g / 558.4 N
|
|
| 100 °C | -28.8% |
43.39 kg / 95.66 lbs
43389.3 g / 425.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 45x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
166.23 kg / 366.47 lbs
5 401 Gs
|
24.93 kg / 54.97 lbs
24934 g / 244.6 N
|
N/A |
| 1 mm |
159.87 kg / 352.45 lbs
8 076 Gs
|
23.98 kg / 52.87 lbs
23980 g / 235.2 N
|
143.88 kg / 317.20 lbs
~0 Gs
|
| 2 mm |
153.38 kg / 338.14 lbs
7 910 Gs
|
23.01 kg / 50.72 lbs
23007 g / 225.7 N
|
138.04 kg / 304.33 lbs
~0 Gs
|
| 3 mm |
146.92 kg / 323.90 lbs
7 742 Gs
|
22.04 kg / 48.58 lbs
22038 g / 216.2 N
|
132.23 kg / 291.51 lbs
~0 Gs
|
| 5 mm |
134.19 kg / 295.83 lbs
7 399 Gs
|
20.13 kg / 44.37 lbs
20128 g / 197.5 N
|
120.77 kg / 266.25 lbs
~0 Gs
|
| 10 mm |
104.43 kg / 230.22 lbs
6 527 Gs
|
15.66 kg / 34.53 lbs
15664 g / 153.7 N
|
93.98 kg / 207.20 lbs
~0 Gs
|
| 20 mm |
58.47 kg / 128.90 lbs
4 884 Gs
|
8.77 kg / 19.34 lbs
8770 g / 86.0 N
|
52.62 kg / 116.01 lbs
~0 Gs
|
| 50 mm |
8.61 kg / 18.98 lbs
1 874 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 60 mm |
4.72 kg / 10.41 lbs
1 388 Gs
|
0.71 kg / 1.56 lbs
708 g / 6.9 N
|
4.25 kg / 9.37 lbs
~0 Gs
|
| 70 mm |
2.68 kg / 5.91 lbs
1 046 Gs
|
0.40 kg / 0.89 lbs
402 g / 3.9 N
|
2.41 kg / 5.32 lbs
~0 Gs
|
| 80 mm |
1.58 kg / 3.48 lbs
803 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 90 mm |
0.96 kg / 2.12 lbs
627 Gs
|
0.14 kg / 0.32 lbs
145 g / 1.4 N
|
0.87 kg / 1.91 lbs
~0 Gs
|
| 100 mm |
0.61 kg / 1.34 lbs
497 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.55 kg / 1.20 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 45x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 22.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 17.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 45x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.34 km/h
(5.37 m/s)
|
3.44 J | |
| 30 mm |
28.41 km/h
(7.89 m/s)
|
7.43 J | |
| 50 mm |
36.12 km/h
(10.03 m/s)
|
12.01 J | |
| 100 mm |
50.98 km/h
(14.16 m/s)
|
23.92 J |
Tabela 9: Odporność na korozję
MW 45x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 66 952 Mx | 669.5 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 45x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 60.94 kg | Standard |
| Woda (dno rzeki) |
69.78 kg
(+8.84 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której grubość sięga przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Produkt nie dla dzieci
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Nie lekceważ mocy
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Niklowa powłoka a alergia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Wpływ na smartfony
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Zakaz obróbki
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Urazy ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Nośniki danych
Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
