MW 45x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010072
GTIN/EAN: 5906301810711
Średnica Ø
45 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
298.21 g
Kierunek magnesowania
↑ osiowy
Udźwig
67.33 kg / 660.51 N
Indukcja magnetyczna
460.72 mT / 4607 Gs
Powłoka
[NiCuNi] nikiel
101.55 ZŁ z VAT / szt. + cena za transport
82.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie pisz korzystając z
formularz kontaktowy
w sekcji kontakt.
Siłę oraz kształt elementów magnetycznych wyliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MW 45x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010072 |
| GTIN/EAN | 5906301810711 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 298.21 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 67.33 kg / 660.51 N |
| Indukcja magnetyczna ~ ? | 460.72 mT / 4607 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Niniejsze wartości są bezpośredni efekt analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 45x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4606 Gs
460.6 mT
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
krytyczny poziom |
| 1 mm |
4413 Gs
441.3 mT
|
61.79 kg / 136.23 lbs
61791.4 g / 606.2 N
|
krytyczny poziom |
| 2 mm |
4214 Gs
421.4 mT
|
56.35 kg / 124.22 lbs
56345.9 g / 552.8 N
|
krytyczny poziom |
| 3 mm |
4014 Gs
401.4 mT
|
51.11 kg / 112.68 lbs
51112.0 g / 501.4 N
|
krytyczny poziom |
| 5 mm |
3615 Gs
361.5 mT
|
41.47 kg / 91.42 lbs
41466.0 g / 406.8 N
|
krytyczny poziom |
| 10 mm |
2697 Gs
269.7 mT
|
23.08 kg / 50.89 lbs
23083.9 g / 226.5 N
|
krytyczny poziom |
| 15 mm |
1965 Gs
196.5 mT
|
12.25 kg / 27.00 lbs
12247.0 g / 120.1 N
|
krytyczny poziom |
| 20 mm |
1426 Gs
142.6 mT
|
6.46 kg / 14.23 lbs
6455.7 g / 63.3 N
|
średnie ryzyko |
| 30 mm |
778 Gs
77.8 mT
|
1.92 kg / 4.24 lbs
1922.5 g / 18.9 N
|
bezpieczny |
| 50 mm |
285 Gs
28.5 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 45x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| 1 mm | Stal (~0.2) |
12.36 kg / 27.24 lbs
12358.0 g / 121.2 N
|
| 2 mm | Stal (~0.2) |
11.27 kg / 24.85 lbs
11270.0 g / 110.6 N
|
| 3 mm | Stal (~0.2) |
10.22 kg / 22.54 lbs
10222.0 g / 100.3 N
|
| 5 mm | Stal (~0.2) |
8.29 kg / 18.29 lbs
8294.0 g / 81.4 N
|
| 10 mm | Stal (~0.2) |
4.62 kg / 10.18 lbs
4616.0 g / 45.3 N
|
| 15 mm | Stal (~0.2) |
2.45 kg / 5.40 lbs
2450.0 g / 24.0 N
|
| 20 mm | Stal (~0.2) |
1.29 kg / 2.85 lbs
1292.0 g / 12.7 N
|
| 30 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 50 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 45x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.20 kg / 44.53 lbs
20199.0 g / 198.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.73 kg / 14.84 lbs
6733.0 g / 66.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
33.67 kg / 74.22 lbs
33665.0 g / 330.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 45x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.24 kg / 4.95 lbs
2244.3 g / 22.0 N
|
| 1 mm |
|
5.61 kg / 12.37 lbs
5610.8 g / 55.0 N
|
| 2 mm |
|
11.22 kg / 24.74 lbs
11221.7 g / 110.1 N
|
| 3 mm |
|
16.83 kg / 37.11 lbs
16832.5 g / 165.1 N
|
| 5 mm |
|
28.05 kg / 61.85 lbs
28054.2 g / 275.2 N
|
| 10 mm |
|
56.11 kg / 123.70 lbs
56108.3 g / 550.4 N
|
| 11 mm |
|
61.72 kg / 136.07 lbs
61719.2 g / 605.5 N
|
| 12 mm |
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 45x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
OK |
| 40 °C | -2.2% |
65.85 kg / 145.17 lbs
65848.7 g / 646.0 N
|
OK |
| 60 °C | -4.4% |
64.37 kg / 141.91 lbs
64367.5 g / 631.4 N
|
OK |
| 80 °C | -6.6% |
62.89 kg / 138.64 lbs
62886.2 g / 616.9 N
|
|
| 100 °C | -28.8% |
47.94 kg / 105.69 lbs
47939.0 g / 470.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 45x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
208.06 kg / 458.70 lbs
5 651 Gs
|
31.21 kg / 68.80 lbs
31209 g / 306.2 N
|
N/A |
| 1 mm |
199.55 kg / 439.92 lbs
9 023 Gs
|
29.93 kg / 65.99 lbs
29932 g / 293.6 N
|
179.59 kg / 395.93 lbs
~0 Gs
|
| 2 mm |
190.95 kg / 420.96 lbs
8 826 Gs
|
28.64 kg / 63.14 lbs
28642 g / 281.0 N
|
171.85 kg / 378.87 lbs
~0 Gs
|
| 3 mm |
182.46 kg / 402.26 lbs
8 628 Gs
|
27.37 kg / 60.34 lbs
27369 g / 268.5 N
|
164.22 kg / 362.03 lbs
~0 Gs
|
| 5 mm |
165.94 kg / 365.83 lbs
8 228 Gs
|
24.89 kg / 54.87 lbs
24891 g / 244.2 N
|
149.35 kg / 329.25 lbs
~0 Gs
|
| 10 mm |
128.14 kg / 282.49 lbs
7 230 Gs
|
19.22 kg / 42.37 lbs
19221 g / 188.6 N
|
115.32 kg / 254.24 lbs
~0 Gs
|
| 20 mm |
71.33 kg / 157.26 lbs
5 394 Gs
|
10.70 kg / 23.59 lbs
10700 g / 105.0 N
|
64.20 kg / 141.54 lbs
~0 Gs
|
| 50 mm |
10.72 kg / 23.63 lbs
2 091 Gs
|
1.61 kg / 3.54 lbs
1608 g / 15.8 N
|
9.65 kg / 21.26 lbs
~0 Gs
|
| 60 mm |
5.94 kg / 13.10 lbs
1 557 Gs
|
0.89 kg / 1.96 lbs
891 g / 8.7 N
|
5.35 kg / 11.79 lbs
~0 Gs
|
| 70 mm |
3.41 kg / 7.52 lbs
1 180 Gs
|
0.51 kg / 1.13 lbs
512 g / 5.0 N
|
3.07 kg / 6.77 lbs
~0 Gs
|
| 80 mm |
2.03 kg / 4.48 lbs
910 Gs
|
0.30 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.03 lbs
~0 Gs
|
| 90 mm |
1.25 kg / 2.76 lbs
714 Gs
|
0.19 kg / 0.41 lbs
188 g / 1.8 N
|
1.13 kg / 2.48 lbs
~0 Gs
|
| 100 mm |
0.79 kg / 1.75 lbs
569 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.71 kg / 1.58 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 45x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 45x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
3.77 J | |
| 30 mm |
26.71 km/h
(7.42 m/s)
|
8.21 J | |
| 50 mm |
33.97 km/h
(9.43 m/s)
|
13.27 J | |
| 100 mm |
47.92 km/h
(13.31 m/s)
|
26.42 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 45x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 73 928 Mx | 739.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 45x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 67.33 kg | Standard |
| Woda (dno rzeki) |
77.09 kg
(+9.76 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi jedynie ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Pył jest łatwopalny
Pył generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo przytrzaśnięcia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Dla uczulonych
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Rozruszniki serca
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Wpływ na smartfony
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Siła neodymu
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
