MW 15x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010028
GTIN/EAN: 5906301810278
Średnica Ø
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.51 kg / 14.84 N
Indukcja magnetyczna
159.70 mT / 1597 Gs
Powłoka
[NiCuNi] nikiel
1.218 ZŁ z VAT / szt. + cena za transport
0.990 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz przez
formularz
na naszej stronie.
Udźwig oraz formę magnesów neodymowych zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 15x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010028 |
| GTIN/EAN | 5906301810278 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.51 kg / 14.84 N |
| Indukcja magnetyczna ~ ? | 159.70 mT / 1597 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią wynik analizy fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1597 Gs
159.7 mT
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
niskie ryzyko |
| 1 mm |
1483 Gs
148.3 mT
|
1.30 kg / 2.87 lbs
1303.0 g / 12.8 N
|
niskie ryzyko |
| 2 mm |
1320 Gs
132.0 mT
|
1.03 kg / 2.28 lbs
1032.2 g / 10.1 N
|
niskie ryzyko |
| 3 mm |
1137 Gs
113.7 mT
|
0.77 kg / 1.69 lbs
765.0 g / 7.5 N
|
niskie ryzyko |
| 5 mm |
791 Gs
79.1 mT
|
0.37 kg / 0.82 lbs
370.8 g / 3.6 N
|
niskie ryzyko |
| 10 mm |
298 Gs
29.8 mT
|
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
|
niskie ryzyko |
| 15 mm |
127 Gs
12.7 mT
|
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.45 kg / 1.00 lbs
453.0 g / 4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
|
| 1 mm |
|
0.38 kg / 0.83 lbs
377.5 g / 3.7 N
|
| 2 mm |
|
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
|
| 3 mm |
|
1.13 kg / 2.50 lbs
1132.5 g / 11.1 N
|
| 5 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 10 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 11 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 12 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
OK |
| 40 °C | -2.2% |
1.48 kg / 3.26 lbs
1476.8 g / 14.5 N
|
OK |
| 60 °C | -4.4% |
1.44 kg / 3.18 lbs
1443.6 g / 14.2 N
|
|
| 80 °C | -6.6% |
1.41 kg / 3.11 lbs
1410.3 g / 13.8 N
|
|
| 100 °C | -28.8% |
1.08 kg / 2.37 lbs
1075.1 g / 10.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.78 kg / 6.12 lbs
2 915 Gs
|
0.42 kg / 0.92 lbs
417 g / 4.1 N
|
N/A |
| 1 mm |
2.61 kg / 5.76 lbs
3 096 Gs
|
0.39 kg / 0.86 lbs
392 g / 3.8 N
|
2.35 kg / 5.18 lbs
~0 Gs
|
| 2 mm |
2.40 kg / 5.28 lbs
2 966 Gs
|
0.36 kg / 0.79 lbs
360 g / 3.5 N
|
2.16 kg / 4.76 lbs
~0 Gs
|
| 3 mm |
2.15 kg / 4.75 lbs
2 812 Gs
|
0.32 kg / 0.71 lbs
323 g / 3.2 N
|
1.94 kg / 4.27 lbs
~0 Gs
|
| 5 mm |
1.65 kg / 3.63 lbs
2 459 Gs
|
0.25 kg / 0.54 lbs
247 g / 2.4 N
|
1.48 kg / 3.27 lbs
~0 Gs
|
| 10 mm |
0.68 kg / 1.50 lbs
1 582 Gs
|
0.10 kg / 0.23 lbs
102 g / 1.0 N
|
0.61 kg / 1.35 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.21 lbs
595 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.59 km/h
(6.83 m/s)
|
0.06 J | |
| 30 mm |
41.70 km/h
(11.58 m/s)
|
0.18 J | |
| 50 mm |
53.83 km/h
(14.95 m/s)
|
0.30 J | |
| 100 mm |
76.13 km/h
(21.15 m/s)
|
0.59 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 541 Mx | 35.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.51 kg | Standard |
| Woda (dno rzeki) |
1.73 kg
(+0.22 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- z zastosowaniem podłoża ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- której grubość to min. 10 mm
- z płaszczyzną wolną od rys
- w warunkach idealnego przylegania (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Nie lekceważ mocy
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Rozruszniki serca
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zakłócić działanie implantu.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
