MW 45x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010070
GTIN/EAN: 5906301810698
Średnica Ø
45 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
178.92 g
Kierunek magnesowania
↑ osiowy
Udźwig
48.55 kg / 476.32 N
Indukcja magnetyczna
343.84 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
61.84 ZŁ z VAT / szt. + cena za transport
50.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz przez
formularz
przez naszą stronę.
Masę oraz kształt magnesów neodymowych sprawdzisz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 45x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 45x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010070 |
| GTIN/EAN | 5906301810698 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 178.92 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 48.55 kg / 476.32 N |
| Indukcja magnetyczna ~ ? | 343.84 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości stanowią rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
MW 45x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3438 Gs
343.8 mT
|
48.55 kg / 48550.0 g
476.3 N
|
miażdżący |
| 1 mm |
3318 Gs
331.8 mT
|
45.21 kg / 45214.3 g
443.6 N
|
miażdżący |
| 2 mm |
3189 Gs
318.9 mT
|
41.76 kg / 41762.8 g
409.7 N
|
miażdżący |
| 3 mm |
3054 Gs
305.4 mT
|
38.30 kg / 38303.2 g
375.8 N
|
miażdżący |
| 5 mm |
2774 Gs
277.4 mT
|
31.61 kg / 31610.0 g
310.1 N
|
miażdżący |
| 10 mm |
2090 Gs
209.0 mT
|
17.95 kg / 17948.5 g
176.1 N
|
miażdżący |
| 15 mm |
1521 Gs
152.1 mT
|
9.50 kg / 9500.8 g
93.2 N
|
uwaga |
| 20 mm |
1096 Gs
109.6 mT
|
4.94 kg / 4936.3 g
48.4 N
|
uwaga |
| 30 mm |
585 Gs
58.5 mT
|
1.41 kg / 1407.9 g
13.8 N
|
bezpieczny |
| 50 mm |
205 Gs
20.5 mT
|
0.17 kg / 172.6 g
1.7 N
|
bezpieczny |
MW 45x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.71 kg / 9710.0 g
95.3 N
|
| 1 mm | Stal (~0.2) |
9.04 kg / 9042.0 g
88.7 N
|
| 2 mm | Stal (~0.2) |
8.35 kg / 8352.0 g
81.9 N
|
| 3 mm | Stal (~0.2) |
7.66 kg / 7660.0 g
75.1 N
|
| 5 mm | Stal (~0.2) |
6.32 kg / 6322.0 g
62.0 N
|
| 10 mm | Stal (~0.2) |
3.59 kg / 3590.0 g
35.2 N
|
| 15 mm | Stal (~0.2) |
1.90 kg / 1900.0 g
18.6 N
|
| 20 mm | Stal (~0.2) |
0.99 kg / 988.0 g
9.7 N
|
| 30 mm | Stal (~0.2) |
0.28 kg / 282.0 g
2.8 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
MW 45x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.56 kg / 14565.0 g
142.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.71 kg / 9710.0 g
95.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.86 kg / 4855.0 g
47.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
24.28 kg / 24275.0 g
238.1 N
|
MW 45x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.43 kg / 2427.5 g
23.8 N
|
| 1 mm |
|
6.07 kg / 6068.8 g
59.5 N
|
| 2 mm |
|
12.14 kg / 12137.5 g
119.1 N
|
| 5 mm |
|
30.34 kg / 30343.8 g
297.7 N
|
| 10 mm |
|
48.55 kg / 48550.0 g
476.3 N
|
MW 45x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
48.55 kg / 48550.0 g
476.3 N
|
OK |
| 40 °C | -2.2% |
47.48 kg / 47481.9 g
465.8 N
|
OK |
| 60 °C | -4.4% |
46.41 kg / 46413.8 g
455.3 N
|
|
| 80 °C | -6.6% |
45.35 kg / 45345.7 g
444.8 N
|
|
| 100 °C | -28.8% |
34.57 kg / 34567.6 g
339.1 N
|
MW 45x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
115.89 kg / 115892 g
1136.9 N
4 958 Gs
|
N/A |
| 1 mm |
111.99 kg / 111987 g
1098.6 N
6 759 Gs
|
100.79 kg / 100788 g
988.7 N
~0 Gs
|
| 2 mm |
107.93 kg / 107930 g
1058.8 N
6 636 Gs
|
97.14 kg / 97137 g
952.9 N
~0 Gs
|
| 3 mm |
103.82 kg / 103823 g
1018.5 N
6 508 Gs
|
93.44 kg / 93441 g
916.7 N
~0 Gs
|
| 5 mm |
95.55 kg / 95554 g
937.4 N
6 244 Gs
|
86.00 kg / 85998 g
843.6 N
~0 Gs
|
| 10 mm |
75.46 kg / 75455 g
740.2 N
5 548 Gs
|
67.91 kg / 67910 g
666.2 N
~0 Gs
|
| 20 mm |
42.84 kg / 42844 g
420.3 N
4 181 Gs
|
38.56 kg / 38560 g
378.3 N
~0 Gs
|
| 50 mm |
6.20 kg / 6202 g
60.8 N
1 591 Gs
|
5.58 kg / 5582 g
54.8 N
~0 Gs
|
MW 45x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
MW 45x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.09 km/h
(5.58 m/s)
|
2.79 J | |
| 30 mm |
29.29 km/h
(8.14 m/s)
|
5.92 J | |
| 50 mm |
37.23 km/h
(10.34 m/s)
|
9.57 J | |
| 100 mm |
52.54 km/h
(14.59 m/s)
|
19.05 J |
MW 45x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 45x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 57 854 Mx | 578.5 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
MW 45x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 48.55 kg | Standard |
| Woda (dno rzeki) |
55.59 kg
(+7.04 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (rdza, taśma, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
To nie jest zabawka
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Wpływ na smartfony
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Siła neodymu
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Ochrona oczu
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ostrzeżenie dla alergików
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
