MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo skontaktuj się korzystając z
formularz
na stronie kontakt.
Siłę i kształt magnesu neodymowego testujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Poniższe informacje stanowią wynik analizy fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 42180.0 g
413.8 N
|
krytyczny poziom |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 36461.5 g
357.7 N
|
krytyczny poziom |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 31126.5 g
305.4 N
|
krytyczny poziom |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 26336.3 g
258.4 N
|
krytyczny poziom |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 18523.4 g
181.7 N
|
krytyczny poziom |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 7522.9 g
73.8 N
|
uwaga |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 3222.6 g
31.6 N
|
uwaga |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 1487.5 g
14.6 N
|
niskie ryzyko |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 385.8 g
3.8 N
|
niskie ryzyko |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 46.4 g
0.5 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 8436.0 g
82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 7292.0 g
71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 6226.0 g
61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 5268.0 g
51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 3704.0 g
36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 1504.0 g
14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 12654.0 g
124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 8436.0 g
82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 4218.0 g
41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 21090.0 g
206.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 2109.0 g
20.7 N
|
| 1 mm |
|
5.27 kg / 5272.5 g
51.7 N
|
| 2 mm |
|
10.55 kg / 10545.0 g
103.4 N
|
| 5 mm |
|
26.36 kg / 26362.5 g
258.6 N
|
| 10 mm |
|
42.18 kg / 42180.0 g
413.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 42180.0 g
413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 41252.0 g
404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 40324.1 g
395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 39396.1 g
386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 30032.2 g
294.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
141.37 kg / 141367 g
1386.8 N
5 687 Gs
|
N/A |
| 1 mm |
131.73 kg / 131727 g
1292.2 N
9 245 Gs
|
118.55 kg / 118555 g
1163.0 N
~0 Gs
|
| 2 mm |
122.20 kg / 122202 g
1198.8 N
8 904 Gs
|
109.98 kg / 109981 g
1078.9 N
~0 Gs
|
| 3 mm |
113.05 kg / 113050 g
1109.0 N
8 564 Gs
|
101.74 kg / 101745 g
998.1 N
~0 Gs
|
| 5 mm |
96.05 kg / 96052 g
942.3 N
7 894 Gs
|
86.45 kg / 86447 g
848.0 N
~0 Gs
|
| 10 mm |
62.08 kg / 62082 g
609.0 N
6 347 Gs
|
55.87 kg / 55873 g
548.1 N
~0 Gs
|
| 20 mm |
25.21 kg / 25213 g
247.3 N
4 045 Gs
|
22.69 kg / 22692 g
222.6 N
~0 Gs
|
| 50 mm |
2.46 kg / 2464 g
24.2 N
1 264 Gs
|
2.22 kg / 2218 g
21.8 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 11.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Ostrzeżenia
Przegrzanie magnesu
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Interferencja medyczna
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Smartfony i tablety
Silne pole magnetyczne destabilizuje działanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Dla uczulonych
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
