MW 16x9 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010035
GTIN/EAN: 5906301810346
Średnica Ø
16 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.53 kg / 83.64 N
Indukcja magnetyczna
463.05 mT / 4631 Gs
Powłoka
[NiCuNi] nikiel
7.36 ZŁ z VAT / szt. + cena za transport
5.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub zostaw wiadomość korzystając z
formularz kontaktowy
w sekcji kontakt.
Parametry a także formę magnesu zobaczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MW 16x9 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x9 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010035 |
| GTIN/EAN | 5906301810346 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.53 kg / 83.64 N |
| Indukcja magnetyczna ~ ? | 463.05 mT / 4631 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane stanowią wynik kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 16x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4628 Gs
462.8 mT
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
średnie ryzyko |
| 1 mm |
4072 Gs
407.2 mT
|
6.60 kg / 14.56 lbs
6603.5 g / 64.8 N
|
średnie ryzyko |
| 2 mm |
3510 Gs
351.0 mT
|
4.91 kg / 10.82 lbs
4906.8 g / 48.1 N
|
średnie ryzyko |
| 3 mm |
2982 Gs
298.2 mT
|
3.54 kg / 7.80 lbs
3540.1 g / 34.7 N
|
średnie ryzyko |
| 5 mm |
2097 Gs
209.7 mT
|
1.75 kg / 3.86 lbs
1751.1 g / 17.2 N
|
słaby uchwyt |
| 10 mm |
873 Gs
87.3 mT
|
0.30 kg / 0.67 lbs
303.3 g / 3.0 N
|
słaby uchwyt |
| 15 mm |
411 Gs
41.1 mT
|
0.07 kg / 0.15 lbs
67.3 g / 0.7 N
|
słaby uchwyt |
| 20 mm |
220 Gs
22.0 mT
|
0.02 kg / 0.04 lbs
19.3 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
83 Gs
8.3 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 16x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 2.91 lbs
1320.0 g / 12.9 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
982.0 g / 9.6 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.56 lbs
708.0 g / 6.9 N
|
| 5 mm | Stal (~0.2) |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 16x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.56 kg / 5.64 lbs
2559.0 g / 25.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 16x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| 1 mm |
|
2.13 kg / 4.70 lbs
2132.5 g / 20.9 N
|
| 2 mm |
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
| 3 mm |
|
6.40 kg / 14.10 lbs
6397.5 g / 62.8 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 10 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 11 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 12 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 16x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
OK |
| 40 °C | -2.2% |
8.34 kg / 18.39 lbs
8342.3 g / 81.8 N
|
OK |
| 60 °C | -4.4% |
8.15 kg / 17.98 lbs
8154.7 g / 80.0 N
|
OK |
| 80 °C | -6.6% |
7.97 kg / 17.56 lbs
7967.0 g / 78.2 N
|
|
| 100 °C | -28.8% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 16x9 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.55 kg / 58.54 lbs
5 658 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
N/A |
| 1 mm |
23.52 kg / 51.85 lbs
8 711 Gs
|
3.53 kg / 7.78 lbs
3528 g / 34.6 N
|
21.17 kg / 46.66 lbs
~0 Gs
|
| 2 mm |
20.56 kg / 45.32 lbs
8 145 Gs
|
3.08 kg / 6.80 lbs
3084 g / 30.2 N
|
18.50 kg / 40.79 lbs
~0 Gs
|
| 3 mm |
17.80 kg / 39.23 lbs
7 578 Gs
|
2.67 kg / 5.89 lbs
2669 g / 26.2 N
|
16.02 kg / 35.31 lbs
~0 Gs
|
| 5 mm |
13.01 kg / 28.69 lbs
6 481 Gs
|
1.95 kg / 4.30 lbs
1952 g / 19.2 N
|
11.71 kg / 25.82 lbs
~0 Gs
|
| 10 mm |
5.45 kg / 12.02 lbs
4 194 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 20 mm |
0.94 kg / 2.08 lbs
1 746 Gs
|
0.14 kg / 0.31 lbs
142 g / 1.4 N
|
0.85 kg / 1.87 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
260 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
166 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 16x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 16x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.84 km/h
(7.18 m/s)
|
0.35 J | |
| 30 mm |
43.80 km/h
(12.17 m/s)
|
1.00 J | |
| 50 mm |
56.54 km/h
(15.71 m/s)
|
1.67 J | |
| 100 mm |
79.96 km/h
(22.21 m/s)
|
3.35 J |
Tabela 9: Odporność na korozję
MW 16x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 16x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 394 Mx | 93.9 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 16x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.53 kg | Standard |
| Woda (dno rzeki) |
9.77 kg
(+1.24 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
UMP 75x25 [M10x3] GW F200 GOLD DUAL / N42 - uchwyty magnetyczne do poszukiwań
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się gładkością
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie jakiejkolwiek warstwy (farba, taśma, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość blachy – za chuda płyta nie zamyka strumienia, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
BHP przy magnesach
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Alergia na nikiel
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Nie zbliżaj do komputera
Potężne oddziaływanie może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Uwaga na odpryski
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Ostrożność wymagana
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Poważne obrażenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Zakaz obróbki
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
