MPL 5x5x1.5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020172
GTIN/EAN: 5906301811787
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.28 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.58 kg / 5.68 N
Indukcja magnetyczna
293.49 mT / 2935 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo pisz przez
formularz zapytania
na stronie kontakt.
Udźwig i kształt elementów magnetycznych obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MPL 5x5x1.5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x1.5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020172 |
| GTIN/EAN | 5906301811787 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.28 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.58 kg / 5.68 N |
| Indukcja magnetyczna ~ ? | 293.49 mT / 2935 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią wynik kalkulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 5x5x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2932 Gs
293.2 mT
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
słaby uchwyt |
| 1 mm |
2036 Gs
203.6 mT
|
0.28 kg / 0.62 lbs
279.6 g / 2.7 N
|
słaby uchwyt |
| 2 mm |
1228 Gs
122.8 mT
|
0.10 kg / 0.22 lbs
101.7 g / 1.0 N
|
słaby uchwyt |
| 3 mm |
727 Gs
72.7 mT
|
0.04 kg / 0.08 lbs
35.7 g / 0.3 N
|
słaby uchwyt |
| 5 mm |
285 Gs
28.5 mT
|
0.01 kg / 0.01 lbs
5.5 g / 0.1 N
|
słaby uchwyt |
| 10 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 5x5x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 5x5x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 5x5x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 1 mm |
|
0.15 kg / 0.32 lbs
145.0 g / 1.4 N
|
| 2 mm |
|
0.29 kg / 0.64 lbs
290.0 g / 2.8 N
|
| 3 mm |
|
0.43 kg / 0.96 lbs
435.0 g / 4.3 N
|
| 5 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 10 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 11 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 12 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 5x5x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
OK |
| 40 °C | -2.2% |
0.57 kg / 1.25 lbs
567.2 g / 5.6 N
|
OK |
| 60 °C | -4.4% |
0.55 kg / 1.22 lbs
554.5 g / 5.4 N
|
|
| 80 °C | -6.6% |
0.54 kg / 1.19 lbs
541.7 g / 5.3 N
|
|
| 100 °C | -28.8% |
0.41 kg / 0.91 lbs
413.0 g / 4.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 5x5x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.33 kg / 2.92 lbs
4 518 Gs
|
0.20 kg / 0.44 lbs
199 g / 1.9 N
|
N/A |
| 1 mm |
0.97 kg / 2.15 lbs
5 027 Gs
|
0.15 kg / 0.32 lbs
146 g / 1.4 N
|
0.88 kg / 1.93 lbs
~0 Gs
|
| 2 mm |
0.64 kg / 1.41 lbs
4 071 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.57 kg / 1.27 lbs
~0 Gs
|
| 3 mm |
0.39 kg / 0.86 lbs
3 188 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.35 kg / 0.78 lbs
~0 Gs
|
| 5 mm |
0.14 kg / 0.30 lbs
1 886 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.03 lbs
569 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
108 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 5x5x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 5x5x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.91 km/h
(12.75 m/s)
|
0.02 J | |
| 30 mm |
79.50 km/h
(22.08 m/s)
|
0.07 J | |
| 50 mm |
102.64 km/h
(28.51 m/s)
|
0.11 J | |
| 100 mm |
145.15 km/h
(40.32 m/s)
|
0.23 J |
Tabela 9: Odporność na korozję
MPL 5x5x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 5x5x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 799 Mx | 8.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 5x5x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.58 kg | Standard |
| Woda (dno rzeki) |
0.66 kg
(+0.08 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (NiCuNi, Au, Ag) mają nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Bezpieczna praca
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Ryzyko połknięcia
Neodymowe magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie zbliżaj do komputera
Potężne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Ryzyko uczulenia
Pewna grupa użytkowników ma uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Wskazane jest używanie rękawiczek ochronnych.
