MW 20x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010039
GTIN/EAN: 5906301810384
Średnica Ø
20 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
3.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.97 kg / 9.50 N
Indukcja magnetyczna
91.96 mT / 920 Gs
Powłoka
[NiCuNi] nikiel
1.574 ZŁ z VAT / szt. + cena za transport
1.280 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz kształt magnesów wyliczysz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna produktu - MW 20x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010039 |
| GTIN/EAN | 5906301810384 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 3.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.97 kg / 9.50 N |
| Indukcja magnetyczna ~ ? | 91.96 mT / 920 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Niniejsze dane są rezultat symulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 20x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
920 Gs
92.0 mT
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
niskie ryzyko |
| 1 mm |
887 Gs
88.7 mT
|
0.90 kg / 1.99 lbs
902.2 g / 8.9 N
|
niskie ryzyko |
| 2 mm |
832 Gs
83.2 mT
|
0.79 kg / 1.75 lbs
794.6 g / 7.8 N
|
niskie ryzyko |
| 3 mm |
763 Gs
76.3 mT
|
0.67 kg / 1.47 lbs
667.4 g / 6.5 N
|
niskie ryzyko |
| 5 mm |
606 Gs
60.6 mT
|
0.42 kg / 0.93 lbs
421.6 g / 4.1 N
|
niskie ryzyko |
| 10 mm |
294 Gs
29.4 mT
|
0.10 kg / 0.22 lbs
99.5 g / 1.0 N
|
niskie ryzyko |
| 15 mm |
144 Gs
14.4 mT
|
0.02 kg / 0.05 lbs
23.6 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
76 Gs
7.6 mT
|
0.01 kg / 0.01 lbs
6.7 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 20x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.18 kg / 0.40 lbs
180.0 g / 1.8 N
|
| 2 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 20x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.29 kg / 0.64 lbs
291.0 g / 2.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.21 lbs
97.0 g / 1.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.49 kg / 1.07 lbs
485.0 g / 4.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.21 lbs
97.0 g / 1.0 N
|
| 1 mm |
|
0.24 kg / 0.53 lbs
242.5 g / 2.4 N
|
| 2 mm |
|
0.49 kg / 1.07 lbs
485.0 g / 4.8 N
|
| 3 mm |
|
0.73 kg / 1.60 lbs
727.5 g / 7.1 N
|
| 5 mm |
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 10 mm |
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 11 mm |
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
| 12 mm |
|
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 20x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.97 kg / 2.14 lbs
970.0 g / 9.5 N
|
OK |
| 40 °C | -2.2% |
0.95 kg / 2.09 lbs
948.7 g / 9.3 N
|
OK |
| 60 °C | -4.4% |
0.93 kg / 2.04 lbs
927.3 g / 9.1 N
|
|
| 80 °C | -6.6% |
0.91 kg / 2.00 lbs
906.0 g / 8.9 N
|
|
| 100 °C | -28.8% |
0.69 kg / 1.52 lbs
690.6 g / 6.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 20x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.64 kg / 3.61 lbs
1 781 Gs
|
0.25 kg / 0.54 lbs
246 g / 2.4 N
|
N/A |
| 1 mm |
1.59 kg / 3.51 lbs
1 813 Gs
|
0.24 kg / 0.53 lbs
239 g / 2.3 N
|
1.43 kg / 3.16 lbs
~0 Gs
|
| 2 mm |
1.52 kg / 3.36 lbs
1 774 Gs
|
0.23 kg / 0.50 lbs
228 g / 2.2 N
|
1.37 kg / 3.02 lbs
~0 Gs
|
| 3 mm |
1.44 kg / 3.17 lbs
1 724 Gs
|
0.22 kg / 0.48 lbs
216 g / 2.1 N
|
1.29 kg / 2.85 lbs
~0 Gs
|
| 5 mm |
1.24 kg / 2.73 lbs
1 598 Gs
|
0.19 kg / 0.41 lbs
185 g / 1.8 N
|
1.11 kg / 2.45 lbs
~0 Gs
|
| 10 mm |
0.71 kg / 1.57 lbs
1 212 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.0 N
|
0.64 kg / 1.41 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.37 lbs
589 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
88 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 20x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 20x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.76 km/h
(4.93 m/s)
|
0.04 J | |
| 30 mm |
28.97 km/h
(8.05 m/s)
|
0.11 J | |
| 50 mm |
37.38 km/h
(10.38 m/s)
|
0.19 J | |
| 100 mm |
52.87 km/h
(14.69 m/s)
|
0.38 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 20x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 979 Mx | 39.8 µWb |
| Współczynnik Pc | 0.12 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 20x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.97 kg | Standard |
| Woda (dno rzeki) |
1.11 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.12
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka stal nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Tylko dla dorosłych
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Urządzenia elektroniczne
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Ostrożność wymagana
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Ochrona dłoni
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Interferencja magnetyczna
Uwaga: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
