Magnesy neodymowe: siła, której szukasz

Szukasz potężnej mocy w małym rozmiarze? Oferujemy kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do zastosowań domowych, garażu oraz modelarstwa. Sprawdź naszą ofertę dostępne od ręki.

zobacz katalog magnesów

Magnesy do eksploracji dna

Rozpocznij przygodę związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny sprawdzą się w każdej wodzie.

wybierz sprzęt do poszukiwań

Profesjonalne uchwyty z gwintem

Profesjonalne rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na magazynach. Są niezastąpione przy instalacji oświetlenia, czujników oraz banerów.

sprawdź parametry techniczne

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 3 dni

MW 10x1.5 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010003

GTIN/EAN: 5906301810001

5.00

Średnica Ø

10 mm [±0,1 mm]

Wysokość

1.5 mm [±0,1 mm]

Waga

0.88 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.82 kg / 8.01 N

Indukcja magnetyczna

178.06 mT / 1781 Gs

Powłoka

[NiCuNi] nikiel

0.431 z VAT / szt. + cena za transport

0.350 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.350 ZŁ
0.431 ZŁ
cena od 2600 szt.
0.308 ZŁ
0.379 ZŁ
cena od 5200 szt.
0.298 ZŁ
0.366 ZŁ
Masz wątpliwości?

Zadzwoń do nas +48 888 99 98 98 alternatywnie zostaw wiadomość za pomocą formularz na stronie kontakt.
Siłę i budowę magnesu neodymowego przetestujesz dzięki naszemu kalkulatorze siły.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Parametry produktu - MW 10x1.5 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 10x1.5 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010003
GTIN/EAN 5906301810001
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 10 mm [±0,1 mm]
Wysokość 1.5 mm [±0,1 mm]
Waga 0.88 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.82 kg / 8.01 N
Indukcja magnetyczna ~ ? 178.06 mT / 1781 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 10x1.5 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - raport

Niniejsze dane są bezpośredni efekt kalkulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 10x1.5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1780 Gs
178.0 mT
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
bezpieczny
1 mm 1557 Gs
155.7 mT
0.63 kg / 1.38 lbs
627.2 g / 6.2 N
bezpieczny
2 mm 1253 Gs
125.3 mT
0.41 kg / 0.90 lbs
406.2 g / 4.0 N
bezpieczny
3 mm 958 Gs
95.8 mT
0.24 kg / 0.52 lbs
237.4 g / 2.3 N
bezpieczny
5 mm 530 Gs
53.0 mT
0.07 kg / 0.16 lbs
72.8 g / 0.7 N
bezpieczny
10 mm 140 Gs
14.0 mT
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
bezpieczny
15 mm 52 Gs
5.2 mT
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
bezpieczny
20 mm 24 Gs
2.4 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
bezpieczny
30 mm 8 Gs
0.8 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MW 10x1.5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.16 kg / 0.36 lbs
164.0 g / 1.6 N
1 mm Stal (~0.2) 0.13 kg / 0.28 lbs
126.0 g / 1.2 N
2 mm Stal (~0.2) 0.08 kg / 0.18 lbs
82.0 g / 0.8 N
3 mm Stal (~0.2) 0.05 kg / 0.11 lbs
48.0 g / 0.5 N
5 mm Stal (~0.2) 0.01 kg / 0.03 lbs
14.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 10x1.5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.41 kg / 0.90 lbs
410.0 g / 4.0 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 10x1.5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
1 mm
25%
0.21 kg / 0.45 lbs
205.0 g / 2.0 N
2 mm
50%
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
3 mm
75%
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
5 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
10 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
11 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N
12 mm
100%
0.82 kg / 1.81 lbs
820.0 g / 8.0 N

Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 10x1.5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.82 kg / 1.81 lbs
820.0 g / 8.0 N
OK
40 °C -2.2% 0.80 kg / 1.77 lbs
802.0 g / 7.9 N
OK
60 °C -4.4% 0.78 kg / 1.73 lbs
783.9 g / 7.7 N
80 °C -6.6% 0.77 kg / 1.69 lbs
765.9 g / 7.5 N
100 °C -28.8% 0.58 kg / 1.29 lbs
583.8 g / 5.7 N

Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 10x1.5 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 1.53 kg / 3.38 lbs
3 185 Gs
0.23 kg / 0.51 lbs
230 g / 2.3 N
N/A
1 mm 1.38 kg / 3.03 lbs
3 371 Gs
0.21 kg / 0.45 lbs
206 g / 2.0 N
1.24 kg / 2.73 lbs
~0 Gs
2 mm 1.17 kg / 2.59 lbs
3 114 Gs
0.18 kg / 0.39 lbs
176 g / 1.7 N
1.06 kg / 2.33 lbs
~0 Gs
3 mm 0.96 kg / 2.12 lbs
2 817 Gs
0.14 kg / 0.32 lbs
144 g / 1.4 N
0.86 kg / 1.91 lbs
~0 Gs
5 mm 0.59 kg / 1.29 lbs
2 201 Gs
0.09 kg / 0.19 lbs
88 g / 0.9 N
0.53 kg / 1.16 lbs
~0 Gs
10 mm 0.14 kg / 0.30 lbs
1 060 Gs
0.02 kg / 0.05 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
281 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
26 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
15 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 10x1.5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x1.5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 30.91 km/h
(8.58 m/s)
0.03 J
30 mm 53.32 km/h
(14.81 m/s)
0.10 J
50 mm 68.84 km/h
(19.12 m/s)
0.16 J
100 mm 97.35 km/h
(27.04 m/s)
0.32 J

Tabela 9: Specyfikacja ochrony powierzchni
MW 10x1.5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 10x1.5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 717 Mx 17.2 µWb
Współczynnik Pc 0.22 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 10x1.5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.82 kg Standard
Woda (dno rzeki) 0.94 kg
(+0.12 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.

2. Efektywność, a grubość stali

*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.

3. Praca w cieple

*W klasie N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010003-2026
Kalkulator miar
Siła oderwania

Moc pola

Inne oferty

Prezentowany produkt to ekstremalnie mocny magnes walcowy, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø10x1.5 mm gwarantuje najwyższą gęstość energii. Komponent MW 10x1.5 / N38 cechuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 0.82 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 8.01 N przy wadze zaledwie 0.88 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, zalecanym sposobem jest wklejanie ich w otwory o średnicy minimalnie większej (np. 10,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø10x1.5), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø10x1.5 mm, co przy wadze 0.88 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 0.82 kg (siła ~8.01 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 10 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Mocne strony

Oprócz niezwykłą energią, nasze magnesy posiadają szereg innych zalet::
  • Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
  • Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
  • Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
  • Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.

Słabe strony

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
  • Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Analiza siły trzymania

Najwyższa nośność magnesuco ma na to wpływ?

Moc magnesu to rezultat pomiaru dla najkorzystniejszych warunków, obejmującej:
  • na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
  • o grubości nie mniejszej niż 10 mm
  • charakteryzującej się gładkością
  • bez najmniejszej szczeliny pomiędzy magnesem a stalą
  • podczas odrywania w kierunku prostopadłym do powierzchni mocowania
  • przy temperaturze otoczenia ok. 20 stopni Celsjusza

Praktyczne aspekty udźwigu – czynniki

Podczas codziennego użytkowania, realna moc wynika z wielu zmiennych, które przedstawiamy od kluczowych:
  • Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
  • Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
  • Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
  • Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje udźwig.

Bezpieczna praca z magnesami neodymowymi
Przegrzanie magnesu

Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).

Smartfony i tablety

Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.

Ryzyko złamań

Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.

Zagrożenie dla najmłodszych

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.

Wpływ na zdrowie

Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić pracę implantu.

Pole magnetyczne a elektronika

Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).

Ryzyko pożaru

Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.

Kruchość materiału

Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.

Reakcje alergiczne

Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.

Świadome użytkowanie

Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.

Zachowaj ostrożność! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98